Human Immune Response to Anti-Carcinoembryonic Antigen Murine Monoclonal Antibodies

Michele J. Losman, Robert L. DeJager, Marc Monestier, Robert M. Sharkey, and David M. Goldenberg

Department of Medicine [M. J. L., R. L. D.] and Center for Molecular Medicine and Immunology [M. M., R. M. S., D. M. G.], University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103

Abstract

We previously demonstrated that patients with carcinoembryonic antigen (CEA)-producing neoplastic tumors, treated with murine monoclonal antibody to CEA, produced antibodies directed against the constant region [human anti-mouse antibody (HAMA)] and the idiotypes [anti-Id] of these murine immunoglobulins. In this study, we describe a method for analyzing the presence of such antibodies in the sera of these patients.

The HAMAs were measured by enzyme immunonassay and removed by immunoadsorption on Affi-Gel mouse IgG. The unabsorbed fraction contained the anti-Id antibodies; their presence was demonstrated by binding to the CEA monoclonal antibody (Ab1). The specificity of the binding was assessed by preincubating the sera with Ab1 and measuring the residual nonspecific binding.

When specific binding was detected, the anti-Id antibodies were isolated by adsorption and elution on Affi-Gel Ab1. The anti-Id antibodies were fixed on enzyme immunonassay plates and incubated with a panel of mouse anti-human immunoglobulin to determine their isotypes. The specificity of the binding was assessed by preincubating the sera with Ab1 and measuring the residual nonspecific binding.

Materials and Methods

CEA-MAbs NP-2 and NP-4 are both IgGl, and their preparation and characteristics have been described elsewhere (17, 18). In the first series (Series 1), 24 patients received NP-2; the treatment schedule has been reported previously (11, 19). In a clinical trial currently in progress (Series 2) the patients are treated with 1111-NP-4. The investigation conducted in the first five patients is the subject of this report. Two other CEA-MAbs, NP-1 (control C1) and NP-3 (control C2), recognizing different epitopes on the CEA than NP-2 and NP-4 were used as controls in the assays (17, 18).

The enzyme immunonassay (EIA) for serum HAMA levels measured the antibody response of the patients to the administration of NP-2 or NP-4. Mouse IgG (100 µl; Pel-freez Biologicals, Rogers, AR) was immobilized on a 96-well microtitration plate (Dy ntach Laboratories, Alexandria, VA) at a concentration of 1 µg/well. Another 100 µl of sera diluted in BBS (0.01 M phosphate, pH 7.2) plus 0.15 M NaCl: BBS. 0.1 M boric acid-0.25 M borax-0.075 M NaCl, pH 8.4; BSA, bovine serum albumin.

The removal of the antibodies binding to shared determinants among CEA-MAbs NP-2 and NP-4 were used as controls in the assays (17, 18).

In this study we used two anti-CEA murine MAbs and we evaluated the patients' immune response by measuring their production of HAMA and anti-Id Abs. This report will limit itself to the description of the techniques used to identify the antibodies and measure their titers. The effectiveness of the therapy will be reported elsewhere.

Introduction

MAbs to tumor-associated antigens are increasingly used for the diagnosis and the treatment of human carcinomas (1). From a diagnostic point of view, labeled MAbs can allow the localization of tumor tissue. The MAbs have also been used for their cytotoxic activity against the tumor or as carriers of cytotoxic means (chemotherapeutic agents or radionuclides). However, repeated injections of murine immunoglobulins such as MAbs result in the development of HAMA (2-9). The HAMA, by preventing the MAb antitumor activity by blocking the binding site of the MAbs to the tumor markers (6-13). Conversely, the antibodies and measure their titers. The effectiveness of the therapy will be reported elsewhere.

Materials and Methods

CEA-MAbs NP-2 and NP-4 are both IgGl, and their preparation and characteristics have been described elsewhere (17, 18). In the first series (Series 1), 24 patients received NP-2; the treatment schedule has been reported previously (11, 19). In a clinical trial currently in progress (Series 2) the patients are treated with 1111-NP-4. The investigation conducted in the first five patients is the subject of this report. Two other CEA-MAbs, NP-1 (control C1) and NP-3 (control C2), recognizing different epitopes on the CEA than NP-2 and NP-4 were used as controls in the assays (17, 18).

The enzyme immunonassay (EIA) for serum HAMA levels measured the antibody response of the patients to the administration of NP-2 or NP-4. Mouse IgG (100 µl; Pel-freez Biologicals, Rogers, AR) was immobilized on a 96-well microtitration plate (Dy ntach Laboratories, Alexandria, VA) at a concentration of 1 µg/well. Another 100 µl of sera diluted in BBS (0.01 M phosphate, pH 7.2) plus 0.15 M NaCl: BBS. 0.1 M boric acid-0.25 M borax-0.075 M NaCl, pH 8.4; BSA, bovine serum albumin.

The removal of the antibodies binding to shared determinants among CEA-MAbs NP-2 and NP-4 were used as controls in the assays (17, 18).

The enzyme immunonassay (EIA) for serum HAMA levels measured the antibody response of the patients to the administration of NP-2 or NP-4. Mouse IgG (100 µl; Pel-freez Biologicals, Rogers, AR) was immobilized on a 96-well microtitration plate (Dynatex Laboratories, Alexandria, VA) at a concentration of 1 µg/well. Another 100 µl of sera diluted in BBS (0.01 M phosphate, pH 7.2) plus 0.15 M NaCl: BBS. 0.1 M boric acid-0.25 M borax-0.075 M NaCl, pH 8.4; BSA, bovine serum albumin.

The removal of the antibodies binding to shared determinants among CEA-MAbs NP-2 and NP-4 were used as controls in the assays (17, 18).

The enzyme immunonassay (EIA) for serum HAMA levels measured the antibody response of the patients to the administration of NP-2 or NP-4. Mouse IgG (100 µl; Pel-freez Biologicals, Rogers, AR) was immobilized on a 96-well microtitration plate (Dynatex Laboratories, Alexandria, VA) at a concentration of 1 µg/well. Another 100 µl of sera diluted in BBS (0.01 M phosphate, pH 7.2) plus 0.15 M NaCl: BBS. 0.1 M boric acid-0.25 M borax-0.075 M NaCl, pH 8.4; BSA, bovine serum albumin.
HUMAN IMMUNE RESPONSE TO MURINE ANTI-CEA MAb

Measurement of HAMA Response. In the 29 patients studied, 25 developed HAMA titers ranging from 180 to 4×10^5 (Table 1).

Measurement of Anti-Id Response. Before measuring the anti-Id Abs, the HAMA were removed. In most cases, one adsorption on Affi-Gel with mouse IgG was sufficient to lower their titer to negligible levels (50 or lower). In 11 patients, the HAMA titers remained elevated. Two successive adsorptions were performed, but if the titers dropped somewhat, in 8 cases adsorption to mouse IgG could not be completely eliminated (Table 1). Once the HAMA were removed, anti-Id Abs were detected by the EIA in 26 of the 29 patients investigated. The titers ranged from 120 to 1×10^5 (Table 2). The observed binding was not due to CEA since in this assay the peroxidase-conjugated mouse anti-human immunoglobulin will not bind to CEA but only to a human immunoglobulin. In the first series (Series 1), 21 of 24 sera demonstrated a strong binding to Ab1. In the second series (Series 2) binding to Ab1 was measured in the 5 sera investigated.

The specificity of the anti-Id Abs binding to Ab1 was evaluated using an inhibition assay where F1 was preincubated with Ab1, C1, and C2. The dilution of F1 was chosen accordingly with the results of the direct binding assay (Fig. 2) to ascertain

Table 1 HAMA titers before and after adsorption on mouse IgG

<table>
<thead>
<tr>
<th>Sera HAMA titer</th>
<th>1st passage</th>
<th>2nd passage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,900</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>26,355</td>
<td>1,300</td>
</tr>
<tr>
<td>3</td>
<td>4,100</td>
<td>540</td>
</tr>
<tr>
<td>4</td>
<td>820</td>
<td><10</td>
</tr>
<tr>
<td>5</td>
<td>554</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>800</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td><10</td>
</tr>
<tr>
<td>9</td>
<td>36,000</td>
<td>720</td>
</tr>
<tr>
<td>10</td>
<td>2,990</td>
<td>200</td>
</tr>
<tr>
<td>11</td>
<td>2,440</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>920</td>
<td>200</td>
</tr>
<tr>
<td>13</td>
<td>900</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>360</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>600</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>3,800</td>
<td>200</td>
</tr>
<tr>
<td>18</td>
<td>2,000</td>
<td>200</td>
</tr>
<tr>
<td>19</td>
<td>1,900</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>5,000</td>
<td>480</td>
</tr>
<tr>
<td>21</td>
<td>500</td>
<td>100</td>
</tr>
<tr>
<td>22</td>
<td>300</td>
<td>35</td>
</tr>
<tr>
<td>23</td>
<td>180</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2 HAMA titers before and after adsorption on mouse IgG

<table>
<thead>
<tr>
<th>Series</th>
<th>Patient</th>
<th>Sera HAMA titer</th>
<th>1st passage</th>
<th>2nd passage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>13,021</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>14,660</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>109,881</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>15,505</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>410,484</td>
<td>8,000</td>
<td>8,000</td>
<td>8,000</td>
</tr>
</tbody>
</table>
that any minimal decrease in the amount of anti-Id Ab which bind to Ab1 would be detected.

The binding to Ab1 was found to be variably inhibited by the preincubation with Ab1 (Tables 2 and 3). In 25 sera the inhibition of the binding was at least 30%. In no circumstance could the binding to Ab1 be inhibited by preincubation with the controls C1 and C2 (Fig. 3). Thus, this demonstrated the specificity of the anti-Id Abs.

When the inhibition of the binding to Ab1 by preincubation with Ab1 was at least 85%, anti-Id Abs were isolated by immunoadsorption. This isolation was done using an Affi-Gel-Ab1 column; this column is able to bind 2 different components, the anti-Id Abs and the human circulating CEA. The isolated anti-Id Abs were isotyped by an EIA.

In the first series of 24 patients, 6 sera showed an inhibition of at least 85% and were isotyped. Of those 6, 3 had no sufficient amount of immunoglobulins to be detected while in the 3 others an IgG was found. In the first series, subclass of IgG and light chain determinations were not performed.

In the second, ongoing series, all five patients had significant titers of anti-Id Abs (320 to 1 \times 10³), and inhibition greater than 85% was found in the sera of patient 3 (92%) and 4 (85%). The two sera were isotyped. In addition, patient 5 was also isotyped in spite of a poor degree of inhibition (45%) because of the presence of a very high anti-Id Ab titer (Table 2). The isotyping of the sera of patients 3 and 4 gave a strong response with IgG1, no signal with IgG2 and a limited signal with IgG3 and IgG4. In both cases the light chain was a κ chain. Patient 5's sera reacted with all the antisera (data not shown).

Discussion

In the two series presented in this report, we found that patients who were affected by neoplastic tumors producing CEA and who were treated with CEA-MAb NP-2 and NP-4 developed a strong immune response to murine immunoglobulins. The production of HAMA reflects the response to the constant region of the murine IgG and was detected in 25 of the 29 patients studied; its titers ranged from 180 to 4 \times 10⁵ units. The antiidiotype antibodies (anti-Id) reflect the response to the variable region of the murine immunoglobulin and were measured in 27 of the 29 patients; their titers ranged from 100 to 1 \times 10³ units.

Methods to identify anti-Id antibodies in patients treated with murine MAbs have been published previously. In an earlier report of this laboratory (11), we described a blocking assay that measures the ability of the patients' sera to interfere with the binding of radioiodinated F(ab')2 antibody to CEA. In this study, anti-Id antibodies were detected in 5 out of 10 patients. Herlyn and associates developed an assay that evaluates the inhibition of the binding of 125I-labeled goat or rabbit anti-Id antibodies to their CO17-1A MAb by the anti-Id antibodies present in the patients' sera (20). They detected a positive response in 35 of 41 patients tested. More recently, Tsujisaki (21) proposed a sandwich assay in which the anti-Id antibodies bound to the MAb are revealed by incubation with 125I-labeled MAb.

The major advantage of our technique is its simplicity. All the reagents used are commercially available. It is simpler than our previously described method since it does not require the preparation of F(ab')2 fragments of monoclonal antibodies. Furthermore, our technique can be applied to the detection of antiidiotype antibody to murine immunoglobulins other than IgG1 from which the preparation of F(ab')2 fragments is difficult (22). In contrast to the competitive assay it does not involve the preparation of rabbit or goat anti-Id antibodies.

Once the HAMA has been removed by adsorption of the sera on mouse IgG, the specificity of the assay can be assessed by measuring the inhibition of the binding on Ab1 by preincubation with Ab1. In all cases except two, the binding was inhibited by at least 30%. The binding is specific for the anti-Id and the assay if not affected by the level of CEA in the sera.

In conclusion, anti-Id antibodies were detected in most of the patients treated by CEA-MAbs NP-2 and NP-4. We isolated and characterized anti-Id antibodies successfully in 5 patients; in the first series, an IgG was identified in 3 cases, while we found an IgG1k in 2 patients of the second series. The significance of these observations requires further investigation.

Acknowledgments

The authors wish to thank Marie Birthwright for secretarial assistance in preparing the manuscript.

References

Human Immune Response to Anti-Carcinoembryonic Antigen Murine Monoclonal Antibodies

Michele J. Losman, Robert L. DeJager, Marc Monestier, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/50/3_Supplement/1055s

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.