Effect of Dietary Molybdenum on Esophageal Carcinogenesis in Rats Induced by N-Methyl-N-benzyl Nitrosamine

Hisanao Komada,1 Yoshifumi Kise, Manabu Nakagawa, Manabu Yamamura, Koshiro Hioki, and Masakatsu Yamamoto

Department of Surgery, Kansai Medical University, 1, Fumizono, Moriguchi, Osaka 570, Japan

ABSTRACT

The influence of dietary molybdenum on esophageal carcinogenesis induced by N-methyl-N-benzyl nitrosamine (2.5 mg per kg of body weight once a week for 20 wk s.c.) was studied in male F344 rats. The tumor incidence and tumor development in the esophagus were significantly lower in the rats in the high-molybdenum (2 ppm) diet group than in the rats in the low-molybdenum (0.032 ppm) diet group; i.e., 44.4% (0.6 ± 0.8) and 73.2% (2.2 ± 2.0), respectively. The molybdenum levels in the esophagus-forestomach, liver, and serum were significantly higher in the high-molybdenum diet group than in the low-molybdenum diet group. Xanthine oxidase activity in the esophagus and forestomach in the high-molybdenum diet group was significantly higher than that in the low-molybdenum diet group, whereas liver and serum xanthine oxidase activities were not significantly different between these two groups. These results suggest that xanthine oxidase in the esophagus plays a significant role in the inhibitory effect of molybdenum on esophageal carcinogenesis.

INTRODUCTION

In 1966, Burrell et al. (1) reported that the Bantu of the Transkei district in the Republic of South Africa had a high incidence of esophageal cancer. They attributed the cause to the consumption of food locally grown in soil low in molybdenum. In 1980, Yang (2) showed that the molybdenum contents of serum, hair, and urine samples from a high-incidence area of esophageal cancer in China was significantly lower than that of samples from a low-incidence area. He also noted that an inverse correlation was found between the esophageal cancer mortality rate and the contents of molybdenum, magnesium, and zinc in hair samples. Luo et al. (3) reported that the addition of molybdenum to drinking water significantly inhibited N-nitrososarcosine ethyl ester-induced esophageal and forestomach carcinogenesis in SD rats. They also revealed that the addition of 200 ppm of tungsten, which is antagonistic to molybdenum (4), significantly countered the inhibitory effect of a low level of molybdenum naturally occurring in the diet.

The first indication of the biological role of molybdenum came in 1953 when two groups of workers independently discovered that the flavoprotein enzyme, XOD,2 is a molybdenum-containing metalloenzyme that is dependent on the presence of this metal for its activity (5, 6). XOD, which oxidizes hypoxanthine and xanthine to uric acid, is the last enzyme in the pathway of the degradation of purine derivatives from nucleic acids and is assumed to be a rate-limiting step in purine catabolism (7).

In this study, we examined the effect of dietary molybdenum on esophageal carcinogenesis induced in rats by MBN (8) with special reference to the molybdenum levels and XOD activities in the upper gastrointestinal tract, liver, and serum.

MATERIALS AND METHODS

Chemicals. MBN was purchased from Iwai Chemical Co. (Tokyo, Japan). The purity was checked by high-pressure liquid chromatography and found to be greater than 99%. Sodium molybdate, nitric acid, perchloric acid, hydrochloric acid, and olive oil (all certified to be of special reagent grade) were purchased from Nakarai Chemical Co. (Kyoto, Japan). Trizma base and NAD+ were purchased from Sigma Chemical Co. (St. Louis, MO).

Animals. Weanling male F344 rats (21 days old) were purchased from Kitayama Laboratories, Inc. (Kyoto, Japan). The animals were housed in suspended stainless steel cages (4 rats/cage) in a controlled environment with the temperature and humidity maintained at 22 ± 1°C and 55 ± 5%, respectively, and a 12-h light, 12-h dark cycle. The animals were handled in accordance with the guiding principles in the care and use of animals approved by the American Physiological Society.

Diet. The basal semipurified diets (Table 1) were prepared by the Oriental Yeast Co. (Tokyo, Japan) and stored at 4°C for no longer than 1 mo before use. The basal molybdenum level in this diet was 0.032 ppm determined by a flameless atomic absorption spectrophotometer (Shimadzu Model AA-670G; Kyoto, Japan) (9) and did not contain any detectable tungsten by a colorimetric method (10). This basal diet and one supplemented with 2.0 ppm of molybdenum as sodium molybdate served as low- and high-molybdenum diets, respectively.

Experiment 1. A total of 102 rats were randomized to one of two diets, a low-molybdenum diet or a high-molybdenum diet. After a 4-wk period of adaptation, 45 rats in each group received 20 weekly s.c. injections of MBN dissolved in 0.2 ml of olive oil at a dose level of 2.5 mg/kg of body weight (8). Six controls from each group were given 20 weekly s.c. injections of 0.2 ml of olive oil alone. The rats were allowed to freely drink demineralized distilled water, which had no detectable molybdenum or tungsten. The water was provided in molybdenum-free stainless steel, butyl gum, and polycarbonate water bottles (Clea Japan, Inc., Tokyo, Japan). The stainless steel of the cages was certified to contain no detectable molybdenum or tungsten. The cages and water bottles were washed with 0.1 M HCl solution and rinsed with molybdenum-free deionized distilled water before use.

The rats were examined and weighed each week. They were killed when moribund, and autopsies were performed. Moribund rats exhibited cachexia and dyspnea, judged to be due to large obstructive lesions of the esophagus and the resultant pressure on the trachea. Rats that survived for more than 17 wk from the start of the experiment were included in the effective number of rats, because the first death was caused by esophageal tumors at 17 wk, and no death occurred by then with an exception of 4 rats in the low-molybdenum group, which died of pneumonia. The remaining rats including controls were killed at 28 wk from the start of the experiment.

The esophagus and forestomach were totally excised with the tongue, pharynx, and larynx and fixed in 10% buffered formalin. Other organs were examined carefully and fixed if any lesion was found. Esophageal tumors with diameters of more than 1 mm were excised and stained with hematoxylin-eosin for histopathological examination. The lesions of any other organs were also stained.

Lesions greater than 1 mm in diameter were counted and divided into histological classes, i.e., hyperplastic, mildly dysplastic, moderately dysplastic, severely dysplastic, carcinoma in situ, and infiltrative carcinoma (11, 12). The lesions which were classified as moderately or severely dysplastic were regarded as precancerous lesions.

Survival curves were analyzed by the generalized Wilcoxon test. The incidence of carcinoma was analyzed by the χ2 test. Body weight and

2To whom requests for reprints should be addressed.
number of tumor developments per rat were analyzed with the Student t test.

Experiment 2. A total of 120 rats were randomly divided into 2 groups and fed the low- or high-molybdenum diet in the same manner as in Experiment 1. After a 4-wk period of adaptation, each group was divided into two groups, one receiving a MBN s.c. injection and the other not. Eight rats in each group were killed at 0, 4, 11, 18, and 25 wk. The entire esophagus-forestomach, liver, and blood were removed from each rat and used for molybdenum content and XOD activity analysis.

Molybdenum Analysis. The molybdenum concentration was determined as follows. After wet digestion with nitric and perchloric acids, the digestate was extracted with hydrochloric acid (1:5) (13). Twenty μl of the extraction were applied to a flameless atomic absorption spectrophotometer and the absorption was measured at 313.3 nm (9).

XOD Activity Determination. XOD (NAD*-dependent and O2-dependent) activities were assayed by a modified method of Rowe and Wyngaarden (14, 15). The esophagus-forestomach and liver were removed, and homogenization was carried out in 0.1 M Tris-HCl buffer (pH 8.1) with a Potter-Elvehjem homogenizer with a Teflon pestle. The homogenate was sonically treated with a Branson Sonifier Model 200 (Branson Sonic Power Co., Danbury, CT) and centrifuged at 600 x g for 20 min at -4°C, and the supernatant fluid was centrifuged at 105,000 x g for 60 min at 4°C. Blood samples were centrifuged at 300 x g for 10 min. The supernatant fluid and serum were dialyzed against the same buffer at 4°C overnight and assayed for XOD activity and protein concentration. The reaction mixture was added to 0.01 ml of 0.5 mM NAD* solution, and the rate of change in absorbance at 292 nm was recorded by a Beckman ModelDU-40 spectrophotometer (Fullerton, CA) at 37°C. Enzyme activity was expressed as units (the formation of 1 μmol of uric acid per min) per g of protein. Protein concentration was measured by the method of Lowry et al. (16). Statistics were analyzed by the Student t test.

RESULTS

Body Weight and Survival Curves: Experiment 1. There was no significant difference in body weight between the low-molybdenum and high-molybdenum diet groups (Fig. 1) or in the survival rate (Fig. 2). The mean body weight of both these groups receiving s.c. MBN injections reached a plateau at 15 wk after starting the experiment. Then, it decreased gradually to about 60% of the level of the control groups. Four rats in the low-molybdenum diet group died within 13 wk. Autopsies revealed no specific change other than pneumonia.

Tumor Incidence. The first death was caused by esophageal tumors 17 wk following the start of the experiment. A complete autopsy revealed that all the rats that died after 17 wk had developed multiple sessile or pedunculated lesions of the esophagus and localized thickening of the esophageal wall (Fig. 3). These rats developed cachexia or aspiration pneumonia caused by the obstruction by these lesions. The rats of the low-molybdenum diet group that died before 13 wk had no tumors. The development of esophageal carcinoma was significantly lower in the high-molybdenum diet group (P < 0.001) as shown in Table 2. Few lesions were found in the tongue, pharynx, larynx, or forestomach. There was no statistical difference in the tongue, pharynx, and larynx carcinoma between the low- and high-molybdenum diet groups. There was no carcinoma development in the forestomach. The induced carcinoma of all these organs was squamous cell carcinoma. The rats fed the high-molybdenum diet had significantly fewer tumors (P < 0.001), precancerous lesions (P < 0.01), and carcinoma (P < 0.001) than the rats fed the low-molybdenum diet (Table 3). No primary lesions of a neoplastic or preneoplastic nature were found in any other organs, and there were no metastases or invasions of adjacent tissues found.

Molybdenum Levels. In the esophagus-forestomach, the molybdenum levels in the rats fed the high-molybdenum diet were significantly (P < 0.001 to 0.01) higher than those of the rats fed the low-molybdenum diet (Fig. 4). In both of these groups, the presence or absence of MBN had no significant influence on the molybdenum concentration.

Serum molybdenum levels in the rats fed the high-molybdenum diet were significantly (P < 0.001) higher than those of...
Fig. 3. Histopathological changes of rat esophagus. a, normal epithelium of esophagus consisting of a basal layer of prismatic cells, a layer of 2 to 5 rows of spinous cells with elongated nuclei, and a thin granular layer. H & E, × 100. Bar = 50 μm. b, mildly dysplastic lesion. It is characterized by thickening of the epithelium due to the increase in number and size of the cells. The large basal or spinous cells with large, light, round, or oval nuclei take up one-third of the thickness of the epithelium. Mitotic figures are frequent. H & E, × 100. Bar = 50 μm. c, moderately dysplastic lesion. The large basal or spinous cells take up one-half of the thickness of the epithelium. H & E, × 100. Bar = 50 μm. d, severely dysplastic lesion. Nearly all of the epithelium is composed of basal or squamous cells. Only a few layers of spinous and squamous cells remain on the surface. The stratified structure is disorganized. H & E, × 100. Bar = 50 μm. e, carcinoma in situ (squamous cell type). It is characterized by complete disorganization of the stratified structure, atypism of the spinous cells, and polymorphism. H & E, × 100. Bar = 50 μm. f, infiltrative carcinoma. Malignant cells penetrate the submucosa and infiltrate the muscular layer. H & E, × 25. Bar = 100 μm. g, higher power view of Fig. 3f. H & E, × 50. Bar = 50 μm.

the rats fed the low-molybdenum diet. In both of these groups, the presence or absence of MBN treatment had no significant influence on the molybdenum concentration.

Liver molybdenum levels of the high-molybdenum diet group were significantly ($P < 0.001$ to 0.05) higher than those of the low-molybdenum diet group. In the low-molybdenum diet group, there was a significant ($P < 0.05$) difference between the rats treated with MBN and those not treated with MBN at 11 wk.

XOD Activities. At 4, 11, and 18 wk, the XOD activities in the esophagus-forestomach of the rats fed the high-molybdenum diet were significantly ($P < 0.001$ to 0.05) higher than those of the rats fed the low-molybdenum diet (Fig. 5). There was a significant ($P < 0.01$) difference at 25 wk between these two groups of rats not treated with MBN. However, in the rats treated with MBN, there was no significant difference between these two groups. In MBN-treated rats of both groups, the XOD activities increased linearly after 4 wk and were always slightly higher than those of the rats not treated with MBN. However, there was no significant difference between these two groups.

Serum XOD activities showed no significant difference be-
DIETARY MOLYBDENUM AND ESOPHAGEAL CARCINOGENESIS

Table 2 Effect of dietary molybdenum on the incidence of carcinoma of the esophagus

<table>
<thead>
<tr>
<th>Molybdenum</th>
<th>2 ppm of molybdenum</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low molybdenum</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>Total no. of tumors</td>
<td>670</td>
<td>462</td>
</tr>
<tr>
<td>No. of tumors/rat</td>
<td>16.3</td>
<td>10.3</td>
</tr>
<tr>
<td>No. of precancerous lesions</td>
<td>262</td>
<td>179</td>
</tr>
<tr>
<td>No. of precancerous lesions/rat</td>
<td>6.4</td>
<td>3.9</td>
</tr>
<tr>
<td>No. of carcinomas</td>
<td>91</td>
<td>27</td>
</tr>
<tr>
<td>No. of carcinomas/rat</td>
<td>2.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

* NS, not significant.

Table 3 Incidence and histopathology of esophageal tumors in rats fed low- and 2-ppm molybdenum diets

<table>
<thead>
<tr>
<th>Molybdenum</th>
<th>2 ppm of molybdenum</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low molybdenum</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>Total no. of tumors</td>
<td>670</td>
<td>462</td>
</tr>
<tr>
<td>No. of tumors/rat</td>
<td>16.3</td>
<td>10.3</td>
</tr>
<tr>
<td>No. of precancerous lesions</td>
<td>262</td>
<td>179</td>
</tr>
<tr>
<td>No. of precancerous lesions/rat</td>
<td>6.4</td>
<td>3.9</td>
</tr>
<tr>
<td>No. of carcinomas</td>
<td>91</td>
<td>27</td>
</tr>
<tr>
<td>No. of carcinomas/rat</td>
<td>2.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

* NS, not significant.

Fig. 4. Molybdenum (Mo) levels in the esophagus-forestomach of rats fed a high-molybdenum diet with MBN (O) and without MBN (■), and a low-molybdenum diet with MBN (△) and without MBN (■). MBN treatment was started during the fifth experimental wk and continued for 19 wk. The statistical difference between the high- and low-molybdenum diet groups was P < 0.001 (a), and P < 0.01 (b). B.W., body weight; points and bars, mean ± SD.

Fig. 5. Xanthine oxidase activities in the esophagus-forestomach of rats fed a high-molybdenum diet with MBN (O) and without MBN (■), and a low-molybdenum diet with MBN (△) and without MBN (■). MBN treatment was started during the fifth experimental wk and continued for 19 wk. The statistical difference between the high- and low-molybdenum diet groups was P < 0.001 (a), and P < 0.01 (b). Mo, molybdenum; B.W., body weight; points and bars, mean ± SD.

Fig. 5. Xanthine oxidase activities in the esophagus-forestomach of rats fed a high-molybdenum diet with MBN (O) and without MBN (■), and a low-molybdenum diet with MBN (△) and without MBN (■). MBN treatment was started during the fifth experimental wk and continued for 19 wk. The statistical difference between the high- and low-molybdenum diet groups was P < 0.001 (a), and P < 0.01 (b). Mo, molybdenum; B.W., body weight; points and bars, mean ± SD.

The observations that esophageal cancer patients have lower tissue concentrations of molybdenum than do matched controls (2) support the hypothesis that diminished molybdenum reserves may sensitize the esophagus to environmental carcinogens such as nitrosamines. N-Nitroso compounds show a high degree of organ-specific carcinogenicity (17). Stinson et al. (8) found that weekly doses of 2.5 mg of MBN/kg of body weight (s.c.) to F344 rats produced seduced papillar carcinoma exclusively in the esophagus and, in a few cases, carcinoma of the tongue, pharynx, and larynx. Lizuka et al. (18) revealed that MBN had a specific affinity for the esophagus in a study using autoradiography. When N-nitroso [methyld-14C]benzyl nitrosamine was injected i.v., methylation of purine bases in DNA was most extensive in the esophagus (19). The enzymic removal of O6-methylguanine from esophageal DNA might be relatively slow. On the other hand, Mehta et al. (20) indicated that microbial metabolic activation appeared to be necessary but not a sufficient stimulus for the carcinogenic effects of MBN.

Molybdenum is a constituent element of XOD (5, 6). This enzyme catalyzes the reduction of O2, cytochrome c, and various quinones and dyes by aldehyde and purines (7), and it generates superoxide anion radicals (7, 21). XOD is thought to catalyze the action of various carcinogens (22) and also to catalyze mutagens into DNA adducts that induce mutation of microorganisms (23, 24).

In this study, both molybdenum levels and XOD activities in the esophagus-forestomach tissue in the rats fed the high-molybdenum diet were significantly higher than those of the rats fed the low-molybdenum diet. Furthermore, the XOD activity in MBN-treated rats increased gradually, but that of nontreated rats was maintained at almost the same values throughout the experiment. Westerfeld and Richert (25) showed that liver XOD activity was mainly affected by the protein concentration in the diet. Since the casein concentration in the basal diet used for this experiment was uniform, these two groups showed the same liver XOD activities.

XOD encompasses a wide spectrum of substrate specificity for oxidizable substrates (7, 26) and can interact with compounds containing aromatic nitro groups (27). The primary role of this enzyme might be in detoxification because of its widespread specificity (26, 28). The reduction of organic nitro compounds to hydroxynitro derivatives by XOD may prevent the formation of potentially dangerous nitroso compounds. Although purine N-oxides are known to be oncogenic (29), XOD can degrade purine N-oxides to free bases (30). Fried et al. (31) suggested that XOD serves in vivo to generate the H2O2 required for detoxication reactions using H2O2 as the oxidizing agent.
Lu and Lin (32) revealed that dietary molybdenum (1 mg/rat/day) inhibited DNA methylation of hepatic cells by [3H]thymidine. This suggests that molybdenum directly detoxifies carcinogens independently of XOD. These studies and our data suggest that in vivo metabolism of MBN in the esophagus-forestomach is more important than that in the liver, and XOD which exists in the cytosol fraction (33) plays a role in catalyzing MBN to noncarcinogenic metabolites.

It has been reported that there was no detectable XOD activity or marked decrease in activity in chemically induced carcinomas (34) or transplanted tumor as Novikoff hepatoma (35). Furthermore, Prajda et al. (36) noted that the key purine synthetic enzyme, glutamine 5'-phosphoribosyl 1-pyrophosphate amidotransferase, was increased, but the antagonizing catalytic enzyme, XOD, was decreased in hepatomas. Thus, they concluded that this enzymatic imbalance confers selective advantages to the cancer cells. The elevation of XOD activity may limit the salvage pathway by promoting conversion of hypoxanthine into uric acid. Haddow et al. (37) found that daily i.p. injection of XOD completely suppressed the growth of spontaneous mammary tumors in C3H and high-tumor C strain mice and increased the levels of XOD in the liver and tumors of the treated animals. They speculated that the active XOD molecules penetrated into the liver and tumors and altered growth rates of the tumors. Our results showed that the XOD level in the esophagus-forestomach of the high-molybdenum diet group with fewer tumors was higher than that of the low-molybdenum diet group with many tumors. Further studies are needed to clarify the mechanisms of the inhibitory effect of molybdenum.

ACKNOWLEDGMENTS

The authors are very grateful to Dr. Masami Sumiyoshi (Japan Food Research Laboratory) and Dr. Toshiyuki Fujii (Fujisawa Central Research Laboratory) for fruitful suggestions and to Dr. Naoki Oyaidzu (Kansai Medical University, Second Department of Pathology) for his help in the histological evaluation.

REFERENCES

DIETARY MOLYBDENUM AND ESOPHAGEAL CARCINOGENESIS

on April 3, 2017. © 1990 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from cancerres.aacrjournals.org on March 20, 2017.
Effect of Dietary Molybdenum on Esophageal Carcinogenesis in Rats Induced by \(N \)-Methyl-\(N \)-benzylnitrosamine

Hisanao Komada, Yoshifumi Kise, Manabu Nakagawa, et al.