Effects of Neonatal and Adult Castration and of Testosterone Substitution in Male Rats on Growth of Enzyme-altered Hepatic Foci in the Resistant Hepatocyte Model

Barbro Lindhe, Inger Porsch-Hällström, Jan-Åke Gustafsson, and Agneta Blanck

Department of Medical Nutrition, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge [B. L., I. P.-H., J.-Å. G., A. B.], and Department of Toxicological Genetics, University of Stockholm, S-106 91 Stockholm [I. P.-H.], Sweden

ABSTRACT

Marked sex differences in the growth of enzyme-altered hepatic foci have been observed in rats treated according to the "resistant hepatocyte model." The present study was performed to investigate the effect of neonatal and adult castration of male rats, with or without testosterone substitution, on the growth rate of foci during selection of initiated cells with 2-acetylaminofluorene and partial hepatectomy. Neonatal castration of male rats decreased focal growth to the same level as in female rats. Castration of adult male rats 2 wk before initiation with diethylnitrosamine also decreased the growth rate of foci, but less markedly than in neonatally castrated rats. Testosterone substitution of male rats castrated as neonates or as adults, from 10 days after initiation with diethylnitrosamine, restored focal growth to that of sham-castrated controls. Previous investigations concerning the role of gonadal hormones in sex differentiation of various liver functions indicated a role of the hypothalamic-pituitary-liver axis in mediating the effects of androgens. It is therefore also suggested that the effects of androgens on early steps of hepatocarcinogenesis observed in the present study are mediated by similar mechanisms, possibly through an influence on the metabolism of 2-acetylaminofluorene.

INTRODUCTION

Sex-differentiated chemical hepatocarcinogenesis in the rat has been studied extensively (1–9). Male rats develop hepatocellular carcinomas both earlier and more frequently than female rats when treated with, e.g., 2-AAF (1) or aflatoxin B1 (2) in the diet. The role of gonadal as well as of pituitary hormones has been investigated by means of different hormonal manipulations (3–8). In the male rat neonatal and adult castration (3, 4), estrogen administration (5), hypophysectomy (6), and hypothalamic deafferentation (7) have been shown to decrease liver tumor formation in 2-AAF-treated rats. An increased sensitivity to 2-AAF has been observed in oophorectomized female rats receiving testosterone, when compared with intact rats (8).

In most of these studies it was impossible to discern at what stage of the hepatocarcinogenic process a sexually differentiated event, or an effect of a hormonal manipulation, had occurred. During the last decades several models for rat liver carcinogenesis have been presented, by which the liver cancer process can be separated into at least two distinct steps, initiation and promotion (9–11). These models offer unique possibilities to study the interaction between hormones and specific events in hepatocarcinogenesis.

Previous studies indicate that various sex-differentiated liver functions are regulated via a hypothalamo-pituitary-liver axis, due to the sexual dimorphism in pituitary secretion of GH (12–16). Hepatic metabolism of steroids was first used as a model to elucidate these mechanisms (13). Sex differences in both GH secretion and hepatic metabolism of steroids become apparent at puberty (17). Androgen-dependent GH secretion in male rats seems to be regulated at the hypothalamic level via an influence on secretion of somatostatin and of a GH-releasing factor (18). This hypothalamic influence is imprinted by testicular androgens in the neonatal male rat and has generally been considered as important for the capacity of the animal to respond to testosterone treatment as an adult (19, 20).

Marked sex differences in the size of enzyme-altered foci and in the latency time for development of hepatocellular carcinomas have been observed in the RH-model (21, 22). Continuous infusion of GH to male rats has been shown to "feminize" both hepatic metabolism of steroids and xenobiotics (14, 23) and the growth rate of enzyme-altered foci in the RH-model (24). The present study was designed in order to investigate the role of androgens in rat liver carcinogenesis as a further step to test the notion of the hypothalamic-pituitary-liver axis as a major determinant for the sexual dimorphism in susceptibility of rats to treatment with chemical hepatocarcinogens.

MATERIALS AND METHODS

Chemicals. DEN was obtained from Fluka AG, Buchs, Switzerland. The diet containing 0.02% 2-AAF was delivered from AB Ewos, Södertälje, Sweden. 4-[4-14C]Androstene-3,17-dione (androstenedione) (59 Ci/mmol) was obtained from the Radiochemical Centre, Amersham, England. Unlabeled androstenedione was purchased from The Upjohn Co., Kalamazoo, MI. All other chemicals and solvents were of reagent grade and were obtained from common commercial sources.

Animals and Hormone Treatment. Pregnant female Wistar rats were obtained from Møllegaards Breeding Centre, Ltd., Stensved, Denmark. All rats in the experiment were born within a period of 4 days. They were weaned at the age of 28 days and maintained under standardized conditions of light (lights on from 6 a.m. to 6 p.m.) and temperature (21 ± 1°C). From weaning until carcinogen treatment was started, rats were housed (5–6 rats/cage) in cages with solid floors, covered with dust-free softwood carvings. From 8 wk of age until the end of the experiment, the animals were kept in wire-bottomed cages. Neonatal castration of male rats was performed within 36 h after birth, whereas adult male rats were castrated at 42 days of age. Sham operations of male rats were performed. Two groups of neonatally castrated rats received testosterone substitution from 10 days after initiation (see below and Fig. 1) with either 5- or 10-mm-long constant release capsules containing crystalline testosterone (Sigma), as previously described (25). The capsules were placed s.c. in the scapular region. One group of male rats castrated as adults received 5-mm implants at the same time. All groups of male rats not receiving testosterone, as well as the female rats, were implanted with 5-mm-long empty tubes.

The Resistant Hepatocyte Model. All rats were treated according to a slightly modified RH-model (Ref. 9; Fig. 1). Ten days after initiation with DEN (200 mg/kg of body weight), rats received empty or testos-
Effects of Castration and Testosterone on Hepatic Rat Foci

Testosterone treatment with 5- or 10-mm-long implants restored both the size and number of foci to the levels in neonatally sham-operated male rats. A less pronounced decrease of focal size was observed following castration of rats at 42 days of age (1.6-fold), whereas no effect on the number of foci was observed. Also this effect was reversed by testosterone treatment. Neonatal sham castration led to a slight decrease in focal size compared with the corresponding group of males sham operated as adults. On the other hand, no significant differences were seen between neonatally castrated rats receiving testosterone compared with rats sham operated as adults or rats castrated when adults and then substituted with testosterone. The testosterone levels in sham-operated controls and castrated rats receiving 5-mm-long implants were comparable, whereas neonatally castrated rats receiving 10-mm-long implants exhibited higher serum levels (1.9-fold compared with neonatally castrated rats with 5-mm implants).

As a measure of the sex differences in hepatic steroid metabolism and of the efficiency of the hormonal manipulations, the ratio between the rate of formation of the 5α-reduced and 16α-hydroxylated metabolites, respectively, of androstenedione was calculated. A high ratio corresponds to a female pattern of androstenedione metabolism, whereas the male ratio is much lower. A markedly higher 5α/16α ratio was found with microsomes from female rat liver than with microsomes from male controls, sham-operated as neonates or as adults. Neonatal castration of male rats increased the ratio to the female level, whereas adult castration led to a partial feminization. Testosterone treatment of male rats castrated as neonates or at 42 days of age decreased the 5α/16α ratio to the level of sham-operated controls.

In the separate experiment, where livers were collected at PH in the RH-model, the rate of N\textsubscript{2}O-sulfation of N-OH-2-AAF was significantly lower in preparations from castrated males than in sham-castrated males (0.11 ± 0.02 nmol/min/mg of protein; n = 10, compared with 0.23 ± 0.08 nmol/min/mg of protein; n = 10).

DISCUSSION

Results obtained in the present study showed that both neonatal and adult castration of male rats decreased the growth rate of enzyme-altered hepatic foci in the RH-model. In both cases testosterone substitution restored focal growth to the levels of sham-operated controls. The sex difference in the size of foci was even more pronounced than that previously reported (21, 24). It is also worth noting that sham castration of male rats in the neonatal period led not only to a slightly higher 5α/16α ratio, but also to a slower growth rate of foci, when compared with male rats sham operated as adults.

Several investigators have shown that castration of male rats before administration of 2-AAF inhibits formation of hepatic tumors and that neonatal castration seems to be more efficient than adult castration (3, 4). Also hypothalamic lesions in the median eminence area of male rats decreased tumor formation of male rats subsequently exposed to dietary 2-AAF (7). The design of these studies, where 2-AAF was given in the diet for long periods of time, did not allow any speculations as to whether sex-differentiated hepatocarcinogenesis was due to a sexual dimorphism at the initiation and/or promotion stages. Nevertheless, these findings indicated that the regulation of sex-differentiated liver carcinogenesis might be due to a neuroendocrine influence on some central hepatic function(s).

In the RH-model, sex differences have been shown to occur,
not during DEN initiation, but during selection/promotion with 2-AAF (21, 22, 24). As the low dose of 2-AAF used in this protocol (0.02%) does not cause initiation (9), it is reasonable to assume that the observed sex differentiation of focal growth (21, 24) and the latency time for cancer development (22) are due to an effect on promotion. The differences in the number of foci observed in the present study are probably due to the fact that 2-AAF/PH treatment of female and neonatally castrated male rats is less efficient in promoting initiated cells to foci of a size that can be detected by the method used than in the other groups of rats.

Early studies on hypothalamo-pituitary regulation of liver function focused on the metabolism of steroid hormones (19, 20). Neonatal castration of male rats was reported to lead to a "feminization" of hepatic steroid metabolism and to an unresponsiveness to testosterone treatment, measured as the capacity to restore a male pattern of steroid metabolizing enzymes (19). On the other hand the feminizing effect of adult castration was considered to be completely reversible by testosterone administration (19). Today it is well established that the sexual dimorphism in the secretory pattern of GH exerts a major influence on sex differentiated hepatic metabolism of steroids as well as of various xenobiotics (13, 14, 24). Feminization of GH secretion following neonatal castration was reported to be reversible by androgen treatment (33). These findings, as well as the data presented here, support the view that neonatal imprinting is not an absolute prerequisite for testosterone responiveness, at least not with respect to GH-mediated regulation of liver metabolism. Interestingly, adult castration is much less efficient than neonatal castration in feminizing both the response to 2-AAF/PH selection in the RH-model and the metabolism of steroids and xenobiotics (34). This finding indicates that neonatal imprinting by androgens is important for sex differentiation of hepatocarcinogenesis in the rat and that this phenomenon is not necessarily coupled with an influence on testosterone responiveness.

It has previously been suggested that hepatic metabolism is an important determinant for sex-differentiated hepatocarcinogenesis where 2-AAF is involved. Several pathways of 2-AAF metabolism have been shown to be both sex differentiated (14, 24, 34) and GH regulated (14, 24, 35). These pathways include N,O-sulfation of N-OH-2-AAF (δ > 9), yielding a very reactive and toxic sulfate ester (36, 37). This metabolite of 2-AAF is only weakly mutagenic but seems to be important for the promotive effects of 2-AAF in different experimental systems (38, 39). The sulfotransferase level in neonatally castrated male rats has previously been reported to be comparable to that of female rats, whereas adult castration did not significantly alter the enzyme activity (34, 40). In view of the previously mentioned effect of neonatal sham castration on focal growth, it is of interest to note that a significant decrease in sulfotransferase activity has been reported in neonatally sham-castrated rats compared with intact males (34). These investigations were performed in rats not treated with carcinogens. In rats fed 2-AAF, a marked decrease in N,O-sulfation has been observed (41). The significantly higher sulfotransferase activity in sham-castrated than in castrated male rats observed here, at the time of PH in the RH-model, indicates that the influence of testosterone/GH-secretion on this pathway of 2-AAF metabolism in this specific case becomes manifest during 2-AAF treatment.

Differential mitoinhibition of normal and initiated cells, respectively, has been suggested as a basis for the efficient selection of putatively preneoplastic lesions in the RH-model (9). As very early nodules from male rats, obtained 11 days after completed 2-AAF selection, show markedly lower sulfotransferase levels in vitro than liver from noninitiated male rats treated with 2-AAF/PH, it is quite conceivable that the sulfotransferase levels are lower in foci than in surrounding liver already during 2-AAF selection. Based on the assumption that the sulfation pathway is important for the mitoinhibitory effects of 2-AAF, it is tempting to speculate that the differential inhibition might be more efficient in the liver from male rats, where the difference in sulfotransferase activity between the population of initiated cells and the surrounding liver is more pronounced, than in female or "feminized" male rat liver, where the sulfotransferase activity is low in the whole liver.

Another possible explanation for the sex-differentiated and androgen-dependent focal growth in the model used include a direct influence of GH secretion and/or androgens on foci during the period when a majority of the liver cells are unable to respond to growth stimulation. In fact, testosterone has been shown to be essential for the capacity of male rat liver to regenerate, when a 90% PH was performed (42). This effect might also be mediated via GH secretion, but a direct influence of androgens on male rat liver cannot be excluded.

In conclusion, the data obtained in the present study clearly show that androgens are important for sex differentiation of 2-AAF/PH promotion in the RH-model, probably due to an

A. Blanck, unpublished observations.
indirect effect on the rat liver via the sexually dimorphic secretory pattern of GH. This might constitute a general mechanism for sex differentiation of rat liver carcinogenesis in various models where 2-AAF or other hepatocarcinogens are used. Further studies are needed to identify the specific biochemical and biological endpoints responsible for GH regulation of hepatocarcinogenesis.

ACKNOWLEDGMENTS

Kristina Andersson is gratefully acknowledged for histological assistance.

REFERENCES

Effects of Neonatal and Adult Castration and of Testosterone Substitution in Male Rats on Growth of Enzyme-altered Hepatic Foci in the Resistant Hepatocyte Model

Barbro Lindhe, Inger Porsch-Hällström, Jan-Åke Gustafsson, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/50/9/2679

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.