Increased Expression of the M, 72,000 Type IV Collagenase in Human Colonic Adenocarcinoma

ABSTRACT

Proteolytic enzymes, such as type IV collagenase, play an important role in tumor invasion and metastasis. To examine M, 72,000 type IV collagenase expression in human colon carcinoma, blot hybridizations of total RNA from 19 primary colon tumors were performed. These filters were probed with complementary DNA probes encoding the M, 72,000 type IV collagenase metalloenzyme. The results were expressed as the ratio of the messenger RNA (mRNA) levels in the tumor tissue to that in the normal adjacent normal mucosa (R). The level of the 3.1-kilobase type IV collagenase mRNA was higher in the primary tumor than in the normal adjacent colonie mucosa in 13 of 18 (72%) cases with a diagnosis of adenocarcinoma. These cases were divided into high expression (R, 4.50 to 29.34) and intermediate expression (R, 2.54 to 3.31) subgroups. Both groups showed statistically significant (P < 0.05) elevations when compared with the five cases showing the lowest levels of M, 72,000 type IV collagenase mRNA expression (low expression subgroup; R, 0.96 to 1.48). With this demonstrated elevation of M, 72,000 type IV collagenase mRNA in colorectal adenocarcinoma we examined concomitant expression at the protein level using immunohistochemical techniques. Immunohistochemical examination of 70 cases of colon tumors, including 30 benign adenomas, using anti-M, 72,000 type IV collagenase antibodies demonstrated a significant correlation with Duke's classification (P < 0.001). Our results suggest that enhanced expression of the M, 72,000 type IV collagenase enzyme may be a marker of human colorectal tumor invasiveness.

INTRODUCTION

Colorectal carcinoma ranks second to lung cancer as the leading cause of cancer deaths in the adult United States population (1). It has been estimated that, of the 151,000 new cases of colorectal cancer diagnosed in 1989, over 40% will succumb to the disease. Local invasion and distant metastases are the primary causes of treatment failure in patients with colorectal cancer (2). Recent animal studies have clearly demonstrated that tumor cell invasion and metastasis are not random events but arise from a tumor cell subpopulation of higher metastatic potential (3–5). For colorectal neoplasia, tumor size and therefore local tumor burden may bear little relationship to invasive potential (6, 7). Thus, recent work has focused on biochemical and genetic markers of the invasive phenotype, which would allow identification of patients at greater risk for subsequent development of metastatic disease.

Studies demonstrated both ras gene mutations and myc gene amplification in colorectal carcinomas (8, 9). However, these studies failed to demonstrate a correlation between the degree of tumor invasiveness and the presence of mutated oncogenes. Recent cytogenetic and molecular studies showed allelic dele-

Received 7/11/90; accepted 10/15/90.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported in part by grants from Ministero Della Pubblica Istruzione, Associazione Italiana per la Ricerca sul Cancro, and PF CNR “Oncologia” 88.00680.44, Italy.

2 To whom requests for reprints should be addressed, at Laboratory of Pathology, National Cancer Institute, Bdig. 10, Room 2A33, 9000 Rockville Pike, Bethesda, MD 20892.

439
COLLAGENASE IV EXPRESSION IN COLON ADENOCARCINOMA

Fig. 1. The 5' sequence of M, 72,000 type IV collagenase cDNA. The 5' end of clones pH3a and pIV-16 is indicated by A. Oligonucleotides 74 and 75 (solid lines) were used to determine the transcriptional start sites by primer extension, as described in “Materials and Methods.” The transcription start site, +1, is 286 nucleotides upstream of the translational start site. Asterisk, cleavage site of the signal peptide and the amino terminus of the mature proenzyme.

MATERIALS AND METHODS

Isolation and Sequence Analysis of Full Length cDNA Clones for Human M, 72,000 Type IV Collagenase. Plaques (2 x 10^9) of a Agt 11 human placenta cDNA library (Clontech) were screened with a 100-mer oligonucleotide probe derived from the first 100 bases of the cDNA sequence of the M, 72,000 type IV collagenase as reported by Collier et al. (22). This probe, referred to as P100-5, was synthesized on a Biossearch 8700 DNA synthesizer. P100-5 was labeled using [γ-32P]ATP (6000 Ci/mmol, ICN Radiochemicals) and T4 kinase (BRL).

Positive plaques were purified, subcloned into pUC18, and sequenced using the dyeoxy chain termination method (23). A single 1.1-kilobase clone, pH3a, was selected and used to rescreen the Agt 11 human placental cDNA library. This resulted in the identification of a single 3.1-kilobase clone, which was subsequently purified, subcloned into pSP79 (Pharmacia), and sequenced.

Primer Extension Characterization of M, 72,000 Type IV Collagenase Clones. Oligonucleotide primers 74 (5'-CTCAGCGGCTCATGG-144 and 134 base pairs were obtained using primers 74 and 75, respectively (Fig. 2). These results demonstrate that there is a single transcriptional start site for M, 72,000 type IV collagenase.

Northern Blot Analysis. Five µg of total RNA were size-fractionated through 1% w/v agarose gels containing 2.0 m formaldehyde (26). RNA was transferred to GeneScreen Plus membranes (DuPont) by capillary transfer in 10× SSC overnight. The membranes were washed in 2× SSC and UV-cross-linked with 120,000 µJ/cm² using a UV Stratalinker 2400 (Stratagene). After prehybridization, the membranes were hybridized overnight at 42°C. cDNA probes were radiolabeled with [32P]dCTP by the random primer method. Hybridized filters were washed in 0.2x SSC/1% sodium dodecyl sulfate at 65°C for 30 min before autoradiography at −70°C with intensifying screens. Signals were quantitated using scanning laser densitometry. Slot blots were done using a Bio-Rad microfiltration apparatus. Four dilutions of each total RNA were blotted to Zeta-Probe membranes (Bio-Rad), UV cross-linked, and treated as described for Northern blots.

RESULTS

Isolation and Characterization of Full Length cDNA Clones for Human M, 72,000 Type IV Collagenase. Screening of a human placental cDNA Agt 11 library was performed using the oligonucleotide probe P100-5. This resulted in identification of a 1.1-kilobase cDNA clone, pH3a, which contained 324 nucleotides upstream of the M, 72,000 type IV collagenase cDNA sequence reported by Collier et al. (22). Clone pH3a was used to rescreen the cDNA library to obtain larger clones. This resulted in identification of a single 3.1-kilobase cDNA clone, pIV-16. Restriction mapping and sequencing of this clone revealed that it contained all of the 5' sequence present in clone pH3a in addition to the entire sequence reported for the 3' end of the M, 72,000 type IV collagenase cDNA sequence reported by Collier et al. (22). The 5' sequences of both clones are shown in Fig. 1. This sequence contains a 286-nucleotide 5' untranslated region and encodes for a 29-amino acid signal peptide sequence for M, 72,000 type IV collagenase.

Primer extension reactions were performed using two oligonucleotide primers complementary to sequences in the 5' end of clone pIV-16 shown in Fig. 1. Primer extension products of 144 and 134 base pairs were obtained using primers 74 and 75, respectively (Fig. 2). These results demonstrate that there is a single transcriptional start site for M, 72,000 type IV collagenase in A2058 melanoma cells and that this site is located 50 base pairs upstream of the end of the pH3a and pIV-16 clones.
COLLAGENASE IV EXPRESSION IN COLON ADENOCARCINOMA

Fig. 3. Northern blot analysis of total cellular RNA from colon tumor tissue and adjacent normal mucosa. Five µg of each sample was electrophoresed and transferred to GeneScreen Plus membranes as described in "Materials and Methods." The diagnosis for patients 1, 3, and 4 was adenocarcinoma of the colon and that for patient 2 was tubulovillous adenoma (see Table 1). Hybridization with 32PdCTP-labeled M, 72,000 type IV collagenase cDNA resulted in a single band at 3.2 kilobases. 32PdCTP-labeled β-actin cDNA was used to normalize sample loading. The ratio of type IV collagenase expression to expression of β-actin in normal tissue is shown below each lane.

Table 1 Demographic data, diagnosis, stage of malignancy, and R value

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age/Sex</th>
<th>Diagnosis</th>
<th>Duke's stage</th>
<th>R value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78/F</td>
<td>Adeno, MD</td>
<td>B2</td>
<td>5.12</td>
</tr>
<tr>
<td>2</td>
<td>63/F</td>
<td>Adenoma</td>
<td>NA</td>
<td>0.49</td>
</tr>
<tr>
<td>3</td>
<td>75/M</td>
<td>Adeno, MD</td>
<td>C2</td>
<td>5.07</td>
</tr>
<tr>
<td>4</td>
<td>70/M</td>
<td>Adeno, WD</td>
<td>B1</td>
<td>29.34</td>
</tr>
<tr>
<td>10</td>
<td>53/F</td>
<td>Adeno, MD</td>
<td>C2</td>
<td>26.83</td>
</tr>
<tr>
<td>13</td>
<td>67/F</td>
<td>Adeno</td>
<td>B2</td>
<td>7.27</td>
</tr>
<tr>
<td>14</td>
<td>41/M</td>
<td>Adeno</td>
<td>B2</td>
<td>3.31</td>
</tr>
<tr>
<td>15</td>
<td>66/M</td>
<td>Adeno, WD</td>
<td>D</td>
<td>10.72</td>
</tr>
<tr>
<td>16</td>
<td>85/F</td>
<td>Adeno, PD</td>
<td>C2</td>
<td>1.06</td>
</tr>
<tr>
<td>17</td>
<td>62/M</td>
<td>Adeno, MD</td>
<td>C2</td>
<td>0.96</td>
</tr>
<tr>
<td>18</td>
<td>73/M</td>
<td>Adeno, MD</td>
<td>C2</td>
<td>2.76</td>
</tr>
<tr>
<td>19</td>
<td>34/F</td>
<td>Adeno, SRC</td>
<td>C2</td>
<td>3.24</td>
</tr>
<tr>
<td>20</td>
<td>50/M</td>
<td>Adeno,WD(N)</td>
<td>D</td>
<td>1.26</td>
</tr>
<tr>
<td>21</td>
<td>76/M</td>
<td>Adeno, WD</td>
<td>D</td>
<td>0.99</td>
</tr>
<tr>
<td>22</td>
<td>7/M</td>
<td>Adeno, WD</td>
<td>B2</td>
<td>10.73</td>
</tr>
<tr>
<td>25</td>
<td>55/M</td>
<td>Adeno, WD</td>
<td>B1</td>
<td>1.48</td>
</tr>
<tr>
<td>26</td>
<td>58/F</td>
<td>Adeno, WD</td>
<td>B1</td>
<td>17.06</td>
</tr>
<tr>
<td>30</td>
<td>77/F</td>
<td>Adeno, WD</td>
<td>B2</td>
<td>4.50</td>
</tr>
<tr>
<td>31</td>
<td>71/F</td>
<td>Adeno, WD</td>
<td>B2</td>
<td>2.54</td>
</tr>
</tbody>
</table>

M, 72,000 Type IV Collagenase mRNA Levels in Human Colorectal Tumors Relative to mRNA Levels in Adjacent Normal Mucosa. Total cellular RNA from 19 matched pairs of human colorectal tumor and normal colonic mucosa were examined for expression of M, 72,000 type IV collagenase mRNA by Northern and/or slot blot analysis. Northern blot hybridization of the initial four cases (Fig. 3) revealed a single band at 3.1 kilobases. Normalization of the data to actin revealed that, in 3 of the 4 cases shown, there was a 4.7- to 7-fold increase in the steady state level of M, 72,000 type IV collagenase mRNA in the colorectal tumors compared with the control tissue. The numbers of the samples in Fig. 3 correspond to the patient numbers in Table 1. Examination of the final diagnosis in these four cases revealed that sample/patient number 2, which had the lowest level of type IV mRNA detected in this study, was a tubulovillous adenoma. High levels of type IV collagenase mRNA were found in those patients (patients 1, 3, and 4) with invasive carcinomas.

All samples were screened for steady state mRNA levels of M, 72,000 type IV collagenase by slot blot hybridization of total cytoplasmic RNA samples. These blots were also hybridized utilizing a human β-actin probe for normalization. Autoradiographs were scanned using a laser densitometer for mRNA quantitation. These results were then expressed as a ratio of M, 72,000 type IV collagenase mRNA in the tumor tissue to the type IV collagenase in the patient matched normal tissue (R value). Thus, a steady state level of M, 72,000 type IV collagenase that was near that of the adjacent normal tissue would result in an R value close to unity. An elevated R value reflects...
COLLAGENASE IV EXPRESSION IN COLON ADENOCARCINOMA

Fig. 4. Immunohistochemistry of M, 72,000 type IV collagenase in human colorectal mucosa and tumor tissues. A, normal colonic mucosa showing lack of immunoreactivity in the colonic epithelial cells. Scattered positive histiocytes serve as an internal control for the antibodies. B, invasive adenocarcinoma of the colon (Case 18). There is strong, cytoplasmic immunostaining of the neoplastic colonic epithelia.

elevation of the M, 72,000 mRNA transcript relative to normal tissue mRNA levels.

M, 72,000 type IV collagenase expression was significantly increased in tumor tissue over normal adjacent tissue in 13 of 18 (72%) cases with a diagnosis of invasive colorectal carcinoma (Table 1). The mean R of all invasive colorectal tumor tissues examined was 7.46. The R values showed three distinct groups. Nine of the 18 cases revealed significant elevation of the R value, with values in the range of 4.50 to 29. The average R value for this high expression group was 12.96. The group
expressing intermediate levels of M, 72,000 type IV collagenase mRNA contained R values ranging from 2.54 to 3.31, and the average value in this group was 2.96. The low expression group contained cases with R values ranging from 0.96 to 1.48, with an average of 1.15. Comparison of these three groups using an unpaired Student's t test revealed that the high and intermediate M, 72,000 type IV collagenase mRNA expression groups were statistically different in terms of their R values from the low expression group, P < 0.01 and P < 0.0005, respectively. Comparison of the R values for the high and intermediate expression groups reveals that they are statistically significant at the P < 0.05 level.

No correlation of mRNA levels and Duke's stages was observed. There was excellent correlation between the Northern blot and slot blot results. Three of four patients (patients 1–3) showed similar levels of elevated M, 72,000 type IV collagenase transcripts when measured by Northern blot hybridization (Fig. 3) or when determined by slot blot hybridization (Table 1). In the single case of a patient diagnosed with a tubulovillous adenoma (patient 2), the R value was the lowest detected in this study (R = 0.49; Table 1) and allowed easy identification of this sample.

Immunohistochemical Staining of Human Colorectal Tumors and Normal Mucosa. Immunohistochemical staining of invasive colorectal tumor tissue and adjacent normal tissue confirmed the elevated levels of type IV collagenase associated with the tumor samples as seen by analysis of mRNA (Fig. 4). Type IV collagenase immunoreactivity was cytoplasmic as previously reported (29). There was a significant increase in positive cells (P < 0.001) when comparing percentages of immunoreactive cells present in adenomas [mean, 8.2 ± 10.5 (SD)] and Duke's stage A/B carcinomas [mean, (30 ± 15.5)] (Fig. 5). Furthermore, tumor progression, as measured by comparison of tumors from Duke's stage A/B with Duke's stage C, was also correlated with a statistically significant increase in the percentage of cells staining positive (Fig. 5).

DISCUSSION

Two cDNA clones for M, 72,000 type IV collagenase were isolated, sequenced, and characterized. These clones contained 5' nucleotide sequences not previously reported for M, 72,000 type IV collagenase cDNA clones. The 3' regions of these clones contained sequences identical to that previously reported for type IV collagenase cDNA (22), which confirmed their identity. Primer extension experiments demonstrated that both clones are 50 base pairs short of the transcription start site in human A2058 melanoma cells. The transcriptional start site occurs 284 base pairs upstream of the translational start site. This suggests that the 3.1-kilobase pIV-16 clone is nearly full length. Both Huhtala et al. (30) and Collier et al. (22) were unable to isolate full length cDNA clones for M, 72,000 type IV collagenase and attributed this to complex secondary structure in the 5' end of the gene. Examination of the sequence for this region of the M, 72,000 type IV collagenase cDNA (Fig. 1) reveals several sequence domains of extremely high GC content. These regions may be responsible for the difficulty in obtaining a full length cDNA clone. The 5' ends of these clones are identical to the sequences obtained from human genomic clones of type IV collagenase characterized by Huhtala et al. (30). Furthermore, the results of primer extension experiments are in excellent agreement with one of the transcriptional start sites in human HT1080 fibrosarcoma cells as reported by Huhtala et al. (30). Differences in transcriptional initiation sites may be accounted for by differences in the types of cells used for the RNA template and differences in the nature of the RNA template [total cytoplasmic RNA versus oligo(dT)-selected mRNA].

Analysis of RNA from human colorectal tissues (Fig. 3; Table 1) showed that, in 13 of 18 cases (72%) of invasive colorectal carcinoma, there was a statistically significant increase in the steady state mRNA levels in the tumor tissue compared with adjacent normal tissue. These increases ranged from 2.54- to 3.31-fold for the intermediate expression group (P < 0.0005) and 4.50- to 29.34-fold for the high expression group (P < 0.01). A low expression group consisting of five cases of colorectal carcinoma was also observed, with R values ranging from 0.96 to 1.48. These relatively low values could possibly be due to tumor necrosis and selective destruction of tumor mRNA. Alternatively, these may utilize a different enzyme system for extracellular matrix proteolysis and destruction of the basement matrix.
membrane. A single case of tubulovillous adenoma (benign polyph, Patient 2, Table 1) was remarkable for the extremely low levels of type IV collagenase mRNA present (R = 0.49). The lack of correlation between the mRNA levels for the M, 72,000 type IV collagenase and the Duke's levels of the tumor studied, despite the correlation seen at the immunohistochemical level, is probably due to the difficulty in processing human tumor tissue samples for analysis of mRNA.

Finally, immunohistochemical studies showed that the elevated M, 72,000 type IV collagenase mRNA levels in the tumor tissue correspond with increased malignant tumor cell-associated type IV collagenase enzyme. This is an important point because it definitively demonstrates that the overproduction of the enzyme, detectable in tumor tissue samples by hybridization analysis of mRNA levels, is localized principally to the invasive tumor cells themselves and is not due to type IV collagenase production by interstitial stromal cells, fibroblasts, or tumor-associated macrophages. Quantification of the number of tumor cells staining positive for M, 72,000 type IV collagenase showed a definite correlation with the stage of the colorectal tumor that was statistically significant (P < 0.001). Examination of a larger patient population will allow confirmation of this correlation.

This study reports the first evidence that levels of type IV collagenase mRNA transcripts are increased in invasive human colon adenocarcinoma tissue and that this increase is specifically associated with increased synthesis of M, 72,000 type IV collagenase protein in the invading tumor cells. Previous studies using metastatic cell lines demonstrated similar results (17, 31–33). Our results indicate that elevation of M, 72,000 type IV collagenase may be a useful marker for invasive adenocarcinoma in human colorectal tumor samples.

ACKNOWLEDGMENTS

The authors would like to thank Mary Wacher and Ingrid M. Margulies for technical assistance in antibody purification and immunoperoxidase staining and Edward Unsworth for synthesis of oligonucleotides.

Portions of this work were performed by A. T. Levy in partial fulfillment of requirements for a Master of Science at Hood College, Frederick, MD.

REFERENCES

Increased Expression of the M_r 72,000 Type IV Collagenase in Human Colonic Adenocarcinoma

Anna T. Levy, Vittoria Cioce, Mark E. Sobel, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/51/1/439

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.