Mechanism of Benzylselenocyanate Inhibition of Azoxymethane-induced Colon Carcinogenesis in F344 Rats

Emerich S. Fiala,2 Cathy Joseph, Ock Soon Sohn, Karam El-Bayoumy, and Bandaru S. Reddy

American Health Foundation, Valhalla, New York 10595

ABSTRACT

Benzylselenocyanate (BSC), a novel organoselenium compound, has been found to inhibit azoxymethane (AOM)-induced colon carcinogenesis in rats during initiation. To investigate its mechanism of action, we examined the effects of BSC feeding on the following parameters: (a) metabolism of $[^{14}C]AOM$ to $^{14}CO_2$ in vivo; (b) metabolic activation of AOM to MAM and of MAM to formic acid and methanol by rat liver microsomes in vitro; and (c) AOM-induced DNA methylation in rat livers and colons. Five-week-old male F344 rats were fed modified (23% corn oil) AIN-76A diets containing 0 (control), 25, or 50 ppm of BSC or benzylthiocyanate (BTC), a sulfur analogue of BSC which does not inhibit the colon carcinogenicity of AOM. After 3 weeks, rats were either sacrificed for the isolation of liver microsomes or were given 15 mg/kg of $[^{14}C]AOM$ s.c. to determine the rate of carcinogen metabolism in vivo. No difference in $[^{14}C]AOM$ metabolism was found between rats fed the BTC diets and those fed the control diet. In contrast, the rate of $[^{14}C]$AOM metabolism, as determined by exhaled radioactivity, was 2–3 times higher in rats fed the BSC diets. While liver microsomes from rats fed the BTC diets metabolized AOM and MAM at rates not significantly different from those obtained with control liver microsomes, the metabolic activation of AOM as well as of MAM was stimulated severalfold when assayed with liver microsomes from rats fed the BSC diets. An increase in total liver cytochrome P-450 was also observed in the BSC-fed rats. Following the administration of 15 mg/kg AOM, significantly less O^\prime-methylguanine and 7-methylguanine was present in the colon DNA from rats consuming the BTC diets than in rats fed the BTC or control diets. The body weight gains of rats fed the 25- and 50-ppm BSC-containing diets for 3 weeks were less (27 and 43%, respectively) than those of rats fed either the control or BTC-containing diets. These results indicate that dietary BSC significantly induces the hydroxylation of AOM and the oxidation of MAM in rat liver. An increase in the rates of AOM and MAM metabolism in the liver due to enzyme induction by BSC will result in decreased delivery of MAM to the colon via the bloodstream. This likely reflects decreased DNA alkylation, as observed, and is likely to be a major factor in the inhibition of AOM-induced colon carcinogenesis by BSC.

INTRODUCTION

BSC1 (Fig. 1) has been shown to be an effective inhibitor of AOM-induced colon carcinogenesis in F344 rats (1) when included in their diet at a level of 25 ppm. The organoselenium compound also significantly inhibited benzo(a)pyrene-induced forestomach tumors in CD-1 mice (2) and dimethylbenz(a)-anthracene-induced mammary tumors in female Sprague-Dawley rats (3). In these studies, equivalent dietary levels of BTC (Fig. 1), an analogue of BSC in which the selenium atom is replaced by sulfur, had no tumor-inhibitory effects. Inorganic selenium, administered in the drinking water or in the diet as sodium selenite, has also been reported to inhibit colon carcinogenesis induced in rats by the metabolically related (4) carcinogens 1,2-dimethylhydrazine (5, 6), AOM (7), and MAM acetate (8) and the unrelated carcinogen bis(2-oxopropyl)nitrosamine (9). In the case of 1,2-dimethylhydrazine, it has been suggested that inorganic selenium may act in part by inhibiting the metabolism of the carcinogen in the liver and by decreasing the rate of DNA synthesis in the colon (10), whereas in the case of bis(2-oxopropyl)nitrosamine, the inhibition of colon carcinogenicity was ascribed in part to enhanced repair of colonic DNA damage (9). Although both BSC and inorganic selenium have the ability to inhibit chemical carcinogenesis in various animal organs and, clearly, the presence of selenium in BSC is essential to its effects, it is not certain to what extent, if any, the mechanisms of chemoprevention by inorganic selenium and BSC overlap. On a molar basis, the acute toxicity of BSC in male F344 rats is approximately 3.4 times less than that of sodium selenite, suggesting that extensive metabolic conversion of BSC to selenite or to some other common toxic intermediate does not occur in vivo. For this reason, and taking into account previously published studies by others (10–14), it is probable that the chemopreventive effects of BSC are intrinsic to the compound and are separable from those of inorganic selenium. Thus, it becomes important to delineate the mechanism of action of BSC, since this may facilitate attempts to design even more effective organoselenium chemopreventive agents.

In this work, we examined the mechanism of BSC action by determining the effects of two dietary levels of the organoselenium compound and its sulfur analogue on the in vivo and in vitro metabolic activation of AOM. We find that BSC, but not BTC, is a powerful inducer of rat liver enzymes that catalyze the hydroxylation of AOM to MAM and the further oxidation of MAM. The feeding of BSC, but not BTC, also results in decreased colon DNA methylation by AOM. These observations lead us to propose that the inhibition of AOM colon carcinogenicity by BSC depends on the increased rate of liver metabolism of the carcinogen, resulting in decreased availability of MAM, a more proximate carcinogetic metabolite of AOM, for further metabolic activation in the colon mucosa.

MATERIALS AND METHODS

Chemicals. AOM and MAM acetate were purchased from Ash Stevens, Inc. (Detroit, MI), and from Starks Associates (Buffalo, NY), respectively. [1,2-14C]AOM and [1,2-14C]MAM acetate were obtained from NEN Research Products (Boston, MA). For in vitro metabolism assays, [1,2-14C]MAM was prepared from [1,2-14C]MAM acetate by hydrolysis with porcine liver esterase (Sigma Chemical Co., St. Louis, MO); otherwise the conditions were the same as those described by Feinberg and Zedeck (15). The material was purified by HPLC (16) prior to use. BTC was obtained from Aldrich Chemicals (Milwaukee, WI). BSC was synthesized as previously described (2).

Received 1/8/91; accepted 3/18/91.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

This investigation was supported by National Cancer Institute Grants CA46589 and CA31012.

1 To whom requests for reprints should be addressed, at American Health Foundation, 1 Dana Road, Valhalla, NY 10595.

2 The abbreviations used are: AOM, azoxymethane; BSC, benzylselenocyanate; BTC, benzylthiocyanate; MAM, methylaomethanol; HPLC, high-performance liquid chromatography.

4 As determined by C. C. Conaway (unpublished) the 50% lethal dose p.o. in male F344 rats of sodium selenite is 0.21 mmol/kg; the 50% lethal dose of BSC under the same conditions is 0.72 mmol/kg.

2826
Animals and Diets. Male F344/Crl rats (35 days old; body weight range, 91–98 g; Charles River, Inc., Kingston, NY) were maintained on tap water and a high-fat modified AIN-76A diet (17) containing dextrose, 8.3%; Alphacel, 5.9%; corn oil, 23.5%; mineral mix (AIN-76), 4.11%; vitamin mix (AIN-76 revised), 1.18%; and choline bitartrate, 0.24%. The inorganic selenium content of this diet is 0.1 ppm. A high level (23.5%) of dietary fat in the form of corn oil was used because of its promotional effects on chemically induced colon carcinogenesis (18) and its use in previous studies on the effects of BSC (3). Animals were weighed every 6 or 7 days. After 21 days on the respective diets, animals were either sacrificed for the isolation of liver microsomes or used for in vivo metabolism studies. All diets were verified for total selenium content by atomic absorption spectrometry.5

In Vivo Metabolism. Rats received s.c. injections of [1,2-14C]AOM (15 mg/kg body weight, approximately 20 µCi/rat) and were immediately placed in Delmar-Roth-type glass metabolism chambers (Bioserv, Inc., Frenchtown, NJ). Air, dried and freed of CO2, was drawn through the chambers at a rate of 250 ml/min by means of peristaltic pumps. The air exiting each chamber was drawn through 2 serially connected gas washers, each containing 150 ml of 1 N NaOH. For determination of radioactivity, replicate 0.5-ml aliquots were taken from the gas washers each hour for the first 7 h; the contents of the gas washers were then renewed, and samples were again taken at 24 h. These procedures are essentially identical to those utilized previously (4, 16, 19).

In Vitro Metabolism. The methods for the isolation of liver microsomes, the conditions of incubation with either [1,2-14C]AOM or [1,2-14C]MAM, and the quantitation of the metabolites of these carcinogens by HPLC have been described in detail previously (4, 20). The cytochrome P-450 content of liver microsomes was determined as described by Estabrook and Werringloer (21).

Determination of DNA Guanine Methylation. Rats received s.c. injections of AOM (15 mg/kg) and were sacrificed 6 h later. The livers and colons were excised quickly, rinsed with ice-cold 0.9% NaCl solution, frozen in liquid N2, and stored at −70°C. After thawing at 0°C on a glass plate resting on crushed ice, the mucosal layer was scraped from the colons with a microscope slide. Scraped colon mucosae or minced livers were homogenized in 8 weight volumes of ice-cold 0.15 M NaCl-0.015 M trisodium citrate buffer, pH 7.0, and DNA was isolated using a modified Marmur method (22) as described in detail previously (23). DNA was hydrolyzed for 18 h in 0.1 M HCl at 37°C and analyzed for S-O6-methylguanine and 7-methylguanine by the HPLC-fluorescence method of Herron and Shank (24).
Fig. 2. *In vivo* metabolism of [14C]AOM. Rats fed control, BTC-containing, or BSC-containing diets for 3 weeks received s.c. injections of 15 mg/kg [14C]AOM and were enclosed in metabolism cages, and exhaled radioactive volatile metabolites (for the most part, 14CO2) trapped in 1 N NaOH were determined. Points, means of 3-4 experiments, each using one animal; bars, SEM.

Fig. 3. *In vitro* metabolism of [14C]AOM to [14C]MAM by liver microsomes from rats fed control, BTC-containing, or BSC-containing diets for 3 weeks. The [14C]MAM product was determined by HPLC as described in “Materials and Methods.” Columns, means of 3-4 determinations, each using liver microsomes from one animal; bars, SD.

Fig. 4. *In vitro* metabolism of [14C]MAM to labeled methanol and formic acid by liver microsomes from rats fed control, BTC-containing, or BSC-containing diets for 3 weeks. Products of MAM metabolism were determined by HPLC as described in “Materials and Methods.” Columns, means of 3-4 separate determinations, each using liver microsomes from one animal; bars, SD.

Fig. 5. Total liver cytochrome P-450 content of rats fed control, BTC-containing, and BSC-containing diets for 3 weeks.

2.3 and 3.3 nmol/mg/min, respectively, when liver microsomes from rats fed the 25- or 50-ppm BSC diets were used. In these *in vitro* experiments, radioactivity recoveries close to 100% were routinely obtained, indicating that the conversion of AOM or MAM to the putative volatile metabolite suspected of being produced *in vivo* does not occur *in vitro* under the incubation conditions used.

Effect on Total Liver Cytochrome P-450 Level. In addition to the significant increase of enzyme activities in rat liver microsomes which catalyze the hydroxylation of AOM and the oxidation of MAM (28), feeding of BSC (but not BTC) resulted in an increase in total liver cytochrome P-450 content as shown in Fig. 5. This effect appeared to be dose dependent; in rats fed the 25-ppm BSC diet, total cytochrome P-450 increased by 35% (P < 0.01) and 73% (P < 0.01) in rats fed the 50-ppm BSC diet compared to control diet-fed rats. There were no significant effects on liver cytochrome P-450 in rats fed either the 25- or 50-ppm BTC diet.

AOM-induced Methylation of DNA Guanine in Rat Liver and Colon. As shown in Fig. 6, compared to feeding with the control diet, feeding rats with BSC or BTC for 3 weeks at levels of 25 or 50 ppm in the diet did not significantly alter the levels of O6-methylguanine or 7-methylguanine in liver DNA assayed 6 h after the administration of 15 mg/kg of AOM. Under these conditions, approximately 6.2 ng 7-methylguanine and 0.88 ng O6-methylguanine/µg guanine were present in liver DNA from rats fed the control diet. The failure of BSC to affect the level of AOM-induced DNA methylation in the liver is in contrast to the inhibition it produced on AOM-induced DNA guanine methylation in the colon (Fig. 7). As in the case of the liver, feeding of BTC at 25 or 50 ppm produced no change in the degree of guanine methylation in colon DNA. However, the same dietary levels of BSC caused a greater than 50% inhibition (P < 0.01) of AOM-induced DNA guanine methylation in the colon at both levels of the compound in the diet. The differences in the methylated guanine content of colon DNA between the two dietary levels were not statistically significant.
DISCUSSION

The inhibition of chemical carcinogenesis by chemopreventive agents can proceed through diverse mechanisms (29); during the stage of tumor initiation, two of the most common are inhibition of carcinogen activation and increased metabolic detoxication. One example of the former process is the complete inhibition of 1,2-dimethylhydrazine-induced colon carcinogenesis in mice by thiono-sulfur compounds such as disulfiram (30) and carbon disulfide (31). Metabolic studies, generally similar to those described in the present work, determined that this effect was primarily due to a block in the metabolic activation of the carcinogen, specifically, inhibition of enzymes catalyzing the N-oxidation of azomethane to AOM (32). In the case of the chemopreventive agent BSC, it is apparent that a completely different mechanism is operating. Examination of the data in Fig. 2 shows that the rate of in vivo metabolism of AOM by rats fed diets containing BSC at levels of 25 or 50 ppm is almost tripled compared to that of control rats or rats fed equivalent amounts of the sulfur-containing analogue BTC. These results suggest that BSC induces enzymes of AOM metabolism. This is confirmed by in vitro studies (Figs. 3 and 4) which indicate that liver microsomes from rats fed BSC are severalfold more active than liver microsomes from control or BTC-fed rats in metabolizing AOM and MAM. The consequence of increased rate of metabolism of AOM and MAM by the liver is decreased availability of MAM for further metabolic activation in the colon, as reflected in decreased DNA methylation (Fig. 7) and inhibition of AOM-induced colon carcinogenesis (1). These relationships are illustrated schematically in Fig. 8. In rat liver, AOM and MAM are activated, at least in part, by the same enzyme (20), recently identified as cytochrome P-450IIE1 (28). The identity of enzymes which further activate MAM in the rat colon is not certain, but it is probable that dehydrogenases, such as alcohol dehydrogenase, as originally suggested by Schoenthal (33) and Zedeck et al. (34), rather than cytochrome P-450s, may play a major role.

It is interesting to note that, in producing these effects, BSC appears to differ considerably from inorganic selenium. For instance, Banner et al. (12) concluded that 4 ppm sodium selenite in drinking water had no effect on the activation of MAM, and Harbach and Swenberg (10) found no effect on the metabolism or colon DNA-methylating ability of 1,2-dimethylhydrazine, the metabolic precursor of AOM and MAM. In addition, a single dose of inorganic selenium caused a decrease in total rat liver cytochrome P-450 by increasing heme oxygenase (11), and continuous administration (4 ppm in drinking water for 30 days) was found to cause no change in the level of total liver cytochrome P-450 in male rats (14).

As noted previously during the induction of metabolism of N-nitrosodimethylamine (35) and MAM (36) by ethanol, increased metabolism of AOM in the livers of BSC-fed animals does not lead to increased DNA methylation in that organ (Fig. 6). It is apparent that, in the liver, the extent of DNA methylation following an acute dose of AOM (or MAM or N-nitrosodimethylamine) does not depend on the rate of metabolism but rather on the total amount of carcinogen metabolized (i.e., the dose).

The administration of BSC to rats at 25 or 50 ppm is not without its side effects. Due to decreased food consumption during the 3 weeks of feeding, the weight gain of the animals fed the BSC diet was significantly less than that of the animals fed the control diet or the diet containing BTC. Significantly decreased body weight gain has also been reported in rats consuming diets high in inorganic selenium (13). BSC has a pronounced odor somewhat similar to that of burnt rubber; presumably, diets containing the compound are not palatable to the animals. Since the induction of cytochrome P-450IIE1 in rat liver can be produced by overnight starvation (37), it was of interest to determine whether the increased rate of AOM metabolism in the BSC-fed animals was due to what was, in effect, dietary restriction. In a separate study (results not

Fig. 6. Liver DNA guanine (G) methylation induced by AOM in rats fed control, BTC-containing, or BSC-containing diets for 3 weeks. AOM was administered s.c. at a dose of 15 mg/kg, and the rats were killed 6 h later. Columns, means of 3–4 experiments, each using one animal, except in the case of the 25–ppm BSC diet, where livers from only 2 animals became available for the study; bars, SD. MeG, methylguanine.

Fig. 7. Colon DNA guanine (G) methylation induced by AOM in rats fed control, BTC-containing, or BSC-containing diets for 3 weeks. Colon were obtained from the same animals used for the results presented in Fig. 6. Columns, means of 3–4 separate determinations, each using one animal; bars, SD. MeG, methylguanine.

Fig. 8. Schematic representation of relationship between AOM activation in rat liver and colon. Induction of enzymes metabolizing AOM and MAM in the liver occurring after feeding of BSC will limit the amount of MAM reaching the colon. This results in decreased MAM activation in that organ, decreased DNA methylation, and inhibition of AOM-induced carcinogenesis.
shown), using a diet identical to the control diet used here, we examined the effects of a 30% dietary restriction on the induction of enzymes of AOM and MAM metabolism in male F344 rats. Although the weight gain of rats submitted to this degree of dietary restriction was essentially the same as that of rats on the 50-ppm BSC dietary regimen, no significant effects on total liver cytochrome P-450 levels or on AOM metabolism by liver microsomes could be detected. In addition to metabolic effects, dietary (or calorific) restriction has been reported to result in a decreased rate of cell turnover in various rat organs, including the colon (38); this factor may also contribute to the inhibition of colon carcinogenesis by dietary BSC. The relationships among these factors and their contributions to the inhibitory effect may turn out to be complex. Nevertheless, the present work indicates clearly that, under conditions very similar to those used previously to demonstrate inhibition of AOM-induced colon carcinogenesis by BSC (39), a major effect of BSC feeding is inhibition of AOM-induced colon DNA alkylation, and therefore tumor initiation, through increased carcinogen metabolism in the liver.

ACKNOWLEDGMENTS

The excellent assistance of Joel Reinhardt in the in vivo studies is gratefully acknowledged.

REFERENCES

14. Schnell, R. C., Early, J. L., Deimling, M. J., Merrick, B. A., and Davies, M. H. Effect of acute and repeated selenium treatment on hepatic monoxygen-
Mechanism of Benzylselenocyanate Inhibition of Azoxymethane-induced Colon Carcinogenesis in F344 Rats

Emerich S. Fiala, Cathy Joseph, Ock Soon Sohn, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/51/11/2826

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.