AACR SPECIAL CONFERENCE IN CANCER RESEARCH

Cellular Responses to Environmental DNA Damage

December 1-6, 1991
Banff Springs Hotel, Banff, Alberta, Canada

CONFERENCE CO-CHAIRPERSONS

PHILIP C. HANAWALT / Stanford, CA
MALCOLM C. PATTERSON / Edmonton, Alberta, Canada

SCIENTIFIC PROGRAM

Keynote Addresses
RICHARD B. SETLOW / Upton, NY
BRUCE N.AMES / Berkeley, CA

DNA Repair: Basic Mechanisms
LAWRENCE GROSSMAN / Baltimore, MD
ERROL C. FRIEDBERG / Dallas, TX
PHILIP C. HANAWALT / Stanford, CA
GWEN B. SANCAR / Chapel Hill, NC
BENNETT VAN HOUTEN / Burlington, VT

Lesions
BEA SINGER / Berkeley, CA
DOUGLAS E. BRASH / New Haven, CT
RUFUS S. DAY III / Edmonton, Alberta, Canada
ARTHUR P. GROLLMAN / Stony Brook, NY
RICHARD J. REYNOLDS / Los Alamos, NM
MUTSUO SEKIUCHI / Fukuoka, Japan
PETER SETLOW / Farmington, CT

Systems
JOHN M. BOYLE / Manchester, England
RONALD D. LEY / Albuquerque, NM
STUART LINN / Berkeley, CA
LOUISE PRAKASH / Rochester, NY
BARRY S. ROSENSTEIN / Providence, RI
BETSY M. SUTHERLAND / Upton, NY

Inducible Responses
WILLIAM L. CARRIER / Oak Ridge, TN
BRUCE DEMPLE / Cambridge, MA
ALBERT J. FORNACE, JR. / Bethesda, MD
GUY G. POIRIER / Sainte-Foy, Quebec, Canada
STEPHEN G. SEDGOWICK / London, England
RONALD Y ASB IN / Baltimore, MD

Mutagenesis
BARRY W. GLICKMAN / Toronto, Ontario, Canada
JOHN M. ESSIGMANN / Cambridge, MA
VERONICA M. MAHER / East Lansing, MI
MICHAEL M. SEIDMAN / Rockville, MD
GRAHAM C. WALKER / Cambridge, MA

Human Population Response Heterogeneity
ROBERT H. HAYNES / Toronto, Ontario, Canada
RICHARD J. ALBERTINI / Burlington, VT
MICHAEL A. BENDER / Upton, NY
DANIEL W. NEBERT / Cincinnati, OH
THOMAS R. SKOPEK / Chapel Hill, NC
DAVID W. YANDELL / Boston, MA

Intragenomic DNA Repair Heterogeneity
VILHELM A. BOHR / Bethesda, MD
REGINALD A. DEERING / University Park, PA
DAREL J. HUNTING / Sherbrooke, Quebec, Canada
GEORGE J. KANTOR / Dayton, OH
LEON H. F. MULLENDES / Leiden, Netherlands
MICHAEL J. SMERDON / Pullman, WA

Human Repair Gene Cloning
CHRISTINE A. WEBER / Livermore, CA
RICHARD A. GATTI / Los Angeles, CA
JOHN P. MURNANE / San Francisco, CA
KIYOJI TANAKA / Osaka, Japan
CRISTINE TROELSTRA / Rotterdam, Netherlands
GORDON F. WHITMORE / Toronto, Ontario, Canada

Human Genetic Disease
JAMES D. REGAN / Oak Ridge, TN
JAMES E. CLEAVER / San Francisco, CA
ALAN R. LEHMANN / Brighton, England
ROBERT W. MILLER / Bethesda, MD
MALCOLM C. PATTERSON / Edmonton, Alberta, Canada
LARRY H. THOMPSON / Livermore, CA

Carcinogenesis
CURTIS C. HARRIS / Bethesda, MD
PETER A. CERUTTI / Epalinges, Switzerland
HELENE Z. HILL / Newark, NJ
ALAIN SARASIN / Villejuif, France
I. BERNARD WEINSTEIN / New York, NY

Aging
RONALD W. HART / Jefferson, AR
RAYMOND J. MONNAT, JR. / Seattle, WA
JOHN PAPACONSTANTINOU / Galveston, TX
KURT RANDERATH / Houston, TX
Y.-H. EUGENA WANG / Montreal, Quebec, Canada

Information and Application Forms
American Association for Cancer Research
Public Ledger Building, Suite 816
Sixth and Chestnut Streets
Philadelphia, PA 19106
215-440-9300 215-440-9313 (FAX)

Deadline for Applications: September 16, 1991
Epidemiological studies reveal that diet is an important factor in human cancer development. About a half century ago, a Swedish scientist, Dr. E. M. P. Widmark, found malignant tumors in the mammary glands of mice with their dorsal skin painted with extracts of roasted horse muscle [Nature (Lond.), 143: 984, 1939]. Fifty years later, Dr. Takashi Sugimura, pictured top right (National Cancer Center, Tokyo), who was not aware of Dr. Widmark’s milestone work, was at home on a day when his wife was broiling dried fish. Smoke moved from the kitchen to his room. Suddenly an inspiration occurred to him that the smoke and the charred part of the fish might contain carcinogens. Because he was working on the mutagenicity/carcinogenicity of food additives using Ames’s Salmonella system at that time, he asked his colleagues to work on this subject, but few showed interest. Dr. Minako Nagao, top left (National Cancer Center), however, explored this idea and actually observed mutagenicity in broiled fish and meat heated under ordinary cooking conditions. The first reports were given at a joint meeting of the AACR and Canadian Cancer Conference held in Toronto and at the Cold Spring Harbor Symposium entitled “Origins of Human Cancer,” both in 1976 (Origins of Human Cancer, Book C, p. 1561, 1977). Nagao reported in an original paper that broiled meat was mutagenic to Salmonella typhimurium TA98 with metabolic activation (Cancer Lett., 2: 221, 1977). She also found the mutagenicity of smoke (Cancer Lett., 2: 335, 1977).

These findings triggered subsequent studies of a series of new environmental mutagens/carcinogens, the heterocyclic amines, which are produced by pyrolysis of amino acids and proteins and by heating meat. Studies of the isolation of mutagenic principles, their organic structure determination, synthesis of compounds, their metabolism, their carcinogenicity in long-term tests using rodents, and risk analyses have been carried out systematically and successfully by various collaborators with Dr. Sugimura, who remains the leading researcher in the field. Here follows a brief introduction to collaborators and synopses of their research.

Takuo Kosuge, top center (University of Shizuoka), an organic chemist, investigated charred substances used in folk medicine and helped to isolate and synthesize mutagenic principles contained in various amino acid pyrolysates, Trp-P-1, Trp-P-2, Glu-P-1, and Glu-P-2 (Proc. Jpn. Acad., 53: 58, 1977; Proc. Jpn. Acad., 54B: 248, 1978). During a visit to Dr. Sugimura’s laboratory in 1977, Dr. John Weisburger was apprised of these pioneering findings and suggested that these mutagens might be the then unknown genotoxic carcinogens for organs such as the colon or breast [E. Farber et al. (eds.). Pathophysiology of Carcinogenesis in Digestive Organs. Tokyo: University of Tokyo Press, pp. 1–20, 1977]. Dr. Neil Spin garg from Weisburger’s laboratory spent time in Tokyo to develop isolation procedures with the Tokyo group. This led to the discovery of IQ, MelIQ, and MelIQx, in collaboration with Drs. Hiroshi Kasai and Susumu Nishimura (National Cancer Center) (Chem. Lett., 1980; 1981: 485, 1981). In long-term studies on mice and rats, Drs. Hiroko Ohgaki, bottom center, and Shozo Takayama, bottom left (National Cancer Center), demonstrated the carcinogenicity of many heterocyclic amines [Science (Washington DC), 213: 346, 1981; 233: 312, 1986; Proceedings of the 21st International Symposium, Princess Takamatsu Cancer Research Fund, 1991], including that of PhIP, recently discovered by Dr. James Felton’s group (Livermore National Laboratory) [Carcinogenesis (Lond.), 7: 1081, 1986]. Dr. Margaretha Jägerstad, bottom right (University of Lund), demonstrated that IQ and MelIQx are produced by heating creatinine, sugars, and amino acids and provided the evidence that the essential 2-amino-3-methylimidazo part of these mutagenic and heterocyclic amines stemmed from creatinine. This finding explained why these compounds form only during heating and cooking of food containing creatinine, such as commonly eaten meats or fishes (Mutat. Res., 126: 239, 1984). The carcinogenicity of IQ in nonhuman primates was demonstrated by Dr. Richard H. Adamson’s group (National Cancer Institute, Bethesda) (Jpn. J. Cancer Res., 81: 10, 1990). Heterocyclic amines are a new class of environmental carcinogens to which humans are being continuously exposed.