AACR SPECIAL CONFERENCE IN CANCER RESEARCH
Cellular Responses to Environmental DNA Damage
December 1-6, 1991
Banff Springs Hotel, Banff, Alberta, Canada

CONFERENCE CO-CHAIRPERSONS
PHILIP C. HANAWALT / Stanford, CA
MALCOLM C. PATerson / Edmonton, Alberta, Canada

SCIENTIFIC PROGRAM

Keynote Addresses
RICHARD B. SETLOW / Upton, NY
BRUCE N. AMES / Berkeley, CA

DNA Repair: Basic Mechanisms
LAWRENCE GROSSMAN / Baltimore, MD
ERROL C. FRIEDBERG / Dallas, TX
PHILIP C. HANAWALT / Stanford, CA
GWEN B. SANCAR / Chapel Hill, NC
BENNETT VAN HOUTEN / Burlington, VT

Lesions
BEA SINGER / Berkeley, CA
DOUGLAS E. BRASH / New Haven, CT
RUFUS S. DAY III / Edmonton, Alberta, Canada
ARTHUR P. GROLLMAN / Story Brook, NY
RICHARD J. REYNOLDS / Los Alamos, NM
MUTSUO SEKIGUCHI / Fukuoka, Japan
PETER SETLOW / Farmington, CT

Systems
JOHN M. BOYLE / Manchester, England
RONALD D. LEY / Albuquerque, NM
STUART LINN / Berkeley, CA
LOUISE PRAKASH / Rochester, NY
BARRY S. ROSENSTEIN / Providence, RI
BETSY M. SUTHERLAND / Upton, NY

Inducible Responses
WILLIAM L. CARRIER / Oak Ridge, TN
BRUCE DEMPLE / Cambridge, MA
ALBERT J. FORNACE, JR, / Bethesda, MD
GUY G. PORIER / Sainte-Foy, Quebec, Canada
STEPHEN G. SEDGWICK / London, England
RONALD YASBIN / Baltimore, MD

Mutagenesis
BARRY W. GLICKMAN / Toronto, Ontario, Canada
JOHN M. ESSIGMANN / Cambridge, MA
VERONICA M. MAHER / East Lansing, MI
MICHAEL M. SEIDMAN / Rockville, MD
GRAHAM C. WALKER / Cambridge, MA

Human Population Response Heterogeneity
ROBERT H. HAYNES / Toronto, Ontario, Canada
RICHARD J. ALBERTINI / Burlington, VT
MICHAEL A. BENDER / Upton, NY
DANIEL W. NEBERT / Cincinnati, OH
THOMAS R. SKOPEK / Chapel Hill, NC
DAVID W. YANDELL / Boston, MA

Intragenomic DNA Repair Heterogeneity
VILHELM A. BOHR / Bethesda, MD
REGINALD A. DEERING / University Park, PA
DAREL J. HUNTING / Sherbrooke, Quebec, Canada
GEORGE J. KANTOR / Dayton, OH
LEON H. F. MULLENDERS / Leiden, Netherlands
MICHAEI J. SMERDON / Pullman, WA

Human Repair Gene Cloning
CHRISTINE A. WEBER / Livermore, CA
RICHARD A. GATTI / Los Angeles, CA
JOHN P. MURNANE / San Francisco, CA
KIYOJI TANAKA / Osaka, Japan
CRISTINE TROELSTRA / Rotterdam, Netherlands
GORDON F. WHITMORE / Toronto, Ontario, Canada

Human Genetic Disease
JAMES D. REGAN / Oak Ridge, TN
JAMES E. CLEAVER / San Francisco, CA
ALAN R. LEHMANN / Breitbart, England
ROBERT W. MILLER / Bethesda, MD
MALCOLM C. PATerson / Edmonton, Alberta, Canada
LARRY H. THOMPSON / Livermore, CA

Carcinogenesis
CURTIS C. HARRIS / Bethesda, MD
PETER A. CERUTTI / Epalinges, Switzerland
HELENE Z. HILL / Newark, NJ
ALAIN SARASIN / Villejuif, France
I. BERNARD WEINSTEIN / New York, NY

Aging
RONALD W. HART / Jefferson, AR
RAYMOND J. MONNAT, JR, / Seattle, WA
JOHN PAPACONSTANTINOU / Galveston, TX
KURT RANDERATH / Houston, TX
Y.-H. EUGENA WANG / Montreal, Quebec, Canada

Information and Application Forms
American Association for Cancer Research
Public Ledger Building, Suite 816
Sixth and Chestnut Streets
Philadelphia, PA 19106
215-440-9300 215-440-9313 (FAX)

Deadline for Applications: September 16, 1991
David Paul von Hansemann (pictured left) studied medicine in Berlin, Kiel, and Leipzig. After defending his doctoral dissertation in 1886 under Julius Cohnheim, Hansemann worked as an assistant to Rudolph Virchow and then held in succession the positions of lecturer, nominal professor, and honorary professor of pathological anatomy at the University of Berlin. He had a special interest in cancer and, in 1890, described the concept of anaplasia, postulating that the increased growth potential of the cancer cell was accompanied by a loss of differentiation and that asymmetrical mitoses were a characteristic of cancer [Arch. Pathol. Anat. (Virchow's), 119: 299, 1890]. Hansemann contrasted his theory of anaplasia [from the Greek, *ana*, backward + *plassein*, to form] to the more popular theory of embryonalism; embryonal tissues remained undifferentiated, while anaplastic tissues had once been differentiated. These theories were further refined in his monograph *Studien über die Spezificität den Altruismus und die Anaplasie der Zellen* published in 1893. Hansemann’s contemporaries considered his ideas very controversial. Hansemann died in 1920, several months after Albert C. Broders (right) of the Mayo Clinic published his method of tumor grading.

Broders graduated from the Medical College of Virginia in 1910 and then studied pathology at the Mayo Clinic. Prior to the 1920s, surgeons had little if any basis for predicting a patient’s prognosis after removal of a malignant tumor. In 1919, Broders, by then an associate surgical pathologist, studied a series of 537 cases of epithelioma of the lip that had been excised at the Mayo Clinic. Broders graded each of these neoplasms as 1, 2, 3, or 4, depending on the degree of differentiation, and found a strong correlation between tumor grade and patient prognosis (JAMA, 74: 656, 1920). More than 90% of patients with well-differentiated tumors (grade 1), two-thirds of those with grade 2 tumors, 25% of those with grade 3 tumors, and none of the patients with anaplastic, poorly differentiated tumors (grade 4) survived. Thus, using David von Hansemann’s concept of anaplasia, Broders had developed the first useful system of grading cancers. The concept of tumor grading was quickly applied to other types of cancers and has enjoyed widespread use since 1920.

Both Dr. Manfred Sturzbecher of West Berlin and Professor Dr. Chr. Thierfelder at the Humboldt-Universität zu Berlin in East Berlin provided copies of the photograph of David Paul von Hansemann. It is originally from a collection of photographs of faculty members of the University of Berlin. We thank Dr. Sturzbecher for a reprint of a Hansemann biographical sketch that appeared in the Bavarian Academy of Science’s *Neue Deutsche Biographie* in 1966. The photograph of Broders was obtained through the courtesy of the National Library of Medicine.

James R. Wright, Jr., M.D.