Influence of Cellular Radiation Sensitivity on Local Tumor Control of Human Melanoma Xenografts Given Fractionated Radiation Treatment

Einar K. Rofstad

Institute for Cancer Research and The Norwegian Cancer Society, The Norwegian Radium Hospital, Montebello, 0310 Oslo 3, Norway

ABSTRACT

The radiocurability of human melanoma xenografts was studied by treating tumors with multiple fractions of 2.0 Gy and using local tumor control at 180 days as end point. Three melanoma lines (E. F., G. E., M. F.) that are only weakly immunogenic in athymic nude mice (BALB/c-\(\text{nu/nu}\)/BOM) were selected for the study. The tumor radiocurability was found to differ considerably among the lines; the radiation doses required to achieve local control of 50% of the tumors irradiated (TCD\(_{50}\); mean \(\pm\) SE) were 85.0 \(\pm\) 4.7 Gy (E. F.), 60.3 \(\pm\) 5.4 Gy (G. E.), and 99.3 \(\pm\) 5.7 Gy (M. F.). The radiation sensitivity in vitro of cells isolated directly from tumors also differed significantly among the lines. The TCD\(_{50}\) showed positive correlations with the surviving fraction after 2.0 Gy in vitro, the surviving fraction after two doses of 2.0 Gy (4-h interval) in vitro, and the surviving fraction after 4.0 Gy at a low dose rate (1.25 cGy/min) in vitro. Thus, the differences in tumor radiocurability among the lines were mainly due to cellular differences in the capacity to repair radiation damage. Comparisons of measured TCD\(_{50}\)s with theoretical TCD\(_{50}\)s, calculated from cell-surviving fractions measured in vitro after radiation treatment in vitro or in vivo, suggested that other tumor parameters, e.g., rate of repopulation between radiation fractions, also had a significant impact on the TCD\(_{50}\). However, this study strongly supports the assumptions that the surviving fraction at 2.0 Gy in vitro is a useful parameter for prediction of clinical tumor radiocurability.

INTRODUCTION

Predictive assays of tumor radiocurability are required for development of individualized and, hence, improved strategies for radiation treatment of cancer (1-3). Studies of the radiation biology of continuous cell lines (4, 5) and primary cell cultures (6-8) derived from human tumors have suggested that SF\(_{2}\) in vitro may predict the clinical radiocurability of tumors. This hypothesis is supported by results from two similar, but independent studies of the radiosensitivity of experimental tumors, one by Rofstad and Brustad (9) involving 5 human melanoma xenograft lines and the other by Bristow and Hill (10) making use of 8 murine tumor lines. The tumors were given fractionated radiation treatment with 2.0-Gy fractions in vivo, and tumor radiosensitivity was found to be correlated with SF\(_{2}\) in vitro for cells isolated from tumors of the same lines. Specific growth delay and tumor cell survival were used as end points for tumor radiosensitivity in both studies.

Similar studies of experimental tumors using local control as the end point after treatment in vivo have not been reported so far. Experiments intending to determine TCD\(_{50}\)s for 2.0-Gy fractions are therefore difficult to perform in a scientifically and ethically proper way (11). Moreover, immune reactivity by the host is often a serious problem in studies of human tumor xenografts (12) and immunogenic murine tumors (11); artificially low TCD\(_{50}\)s can be measured, particularly in studies involving protracted fractionated treatments. However, TCD\(_{50}\)s for 2.0-Gy fractions for experimental tumors with well-characterized cellular radiation sensitivity would be of great value in assessment of the power of SF\(_{2}\) in vitro to predict tumor radiocurability. Even if tumor radioresponsiveness is positively correlated with SF\(_{2}\) in vitro, tumor radiocurability does not necessarily need to show a similar correlation, for example, if (a) the repair capacity of tumor cells is different in the beginning and toward the end of a curative fractionated treatment or (b) the number of stem cells differs considerably among tumors.

Local control following single-dose irradiation of tumors from 5 human melanoma xenograft lines has been studied in our laboratory (13). TCD\(_{50}\), host immune reactivity, and the influence of host immune reactivity on the TCD\(_{50}\) were measured. Three of the lines were found to be just weakly immunogenic in athymic nude mice (BALB/c-\(\text{nu/nu}\)/BOM). The TCD\(_{50}\)s of these lines were not significantly influenced by host immune reactivity, and the lines were judged to be adequate models for tumor radiocurability studies (13). SF\(_{2}\) in vitro has been found to differ considerably among these lines (9, 14). They were therefore selected for tumor radiocurability studies using 2.0-Gy fractions, and the TCD\(_{50}\)s are reported here. The main purpose of the work was to search for a possible relationship between TCD\(_{50}\) and SF\(_{2}\) in vitro, but the impact of other radiobiological parameters on the TCD\(_{50}\) is also discussed.

MATERIALS AND METHODS

Mice and Tumors. Female BALB/c-\(\text{nu/nu}\)/BOM mice, 8 to 10 wk old, were used. They were bred at the animal department of our institute and were kept under specific-pathogen-free conditions.

The melanoma xenograft lines (E. F., G. E., M. F.) were originally derived from lymph node metastases of patients admitted to The Norwegian Radium Hospital. Tumor tissue was transplanted directly into athymic mice without previous adaptation to in vitro culture conditions. Histologically the parent metastases were similar. They were composed of solid trabecules and nests of relatively large cells with hyperchromatic vesicular nuclei surrounded by partly abundant eosinophilic cytoplasm. Areas with more spindle-shaped cells were also seen. The cytoplasm contained little or no melanin. Numerous mitotic figures were found.

The melanoma lines were grown serially in athymic mice by implanting tumor fragments, approximately 2 x 2 x 2 mm, s.c. into the flanks of recipient mice. Passages 35 to 60 of the lines were used in the present work. The lines were stable during the period the experiments were carried out, as ascertained by measurements of DNA histograms, volumetric growth rates, and cellular radiation sensitivities. Light and electron microscopic examinations showed that the histological appearance of the xenografts was similar to that of the metastases in the donor patients.

The immune reactivity of the athymic mice against the melanoma lines has been shown to be exceptionally weak (13). The TCD\(_{50}\) is low for all lines (<40 cells) and not significantly different in untreated and untreated...
with recurrent tumors were killed when the tumor diameters reached except the skin surrounding the tumors. The tumor volumes at the time curve. If any heterogeneity is present, \(A > \) will be overestimated and \(A' \) clonogenic cells per tumor. These formulae are based on the assumption extrapolation number of the cell survival curve, and \(N \) is the number of

\[\text{TCD}_{50} = D_0 \left[\ln(N/n) - \ln(\ln 2) \right] \]

in which \(P \) is the fraction of tumors controlled at dose \(D \), \(n \) is the extrapolation number of the cell survival curve, and \(N \) is the number of clonogenic cells per tumor. These formulae are based on the assumption that only Poisson statistics influence the slope of the tumor control curve. If any heterogeneity is present, \(D_0 \) will be overestimated and \(N \) underestimated by this method of analysis.

RESULTS

Tumor control curves are presented in Fig. 1; the fraction of controlled tumors (double negative logs scale) is plotted versus total radiation dose. The radiocurability and the cellular radiation sensitivity in vitro differed considerably among the melanoma lines; the \(\text{TCD}_{50}s \) and the \(D_0s \) are listed in Table 1. Corresponding \(\text{TCD}_{50}s \) and \(D_0s \) for single-dose irradiation (13) are included in Table 1 for comparison. The number of clonogenic cells per tumor, calculated from Equation B, was found to be equal within experimental error for fractionated and single-dose irradiation for all lines; i.e., the tumor control curves for fractionated irradiation (Fig. 1) were consistent with those for single-dose irradiation (13).

The \(SF_2 \) in vitro and two other radiobiological parameters related to \(SF_2 \) in vitro, i.e., the surviving fraction after 2 doses of 2.0 Gy (\(SF_{2+2} \)) with a 4-h interval in vitro and the \(SF_4 \) at a low dose rate (1.25 cGy/min) in vitro, have been determined with great accuracy (Table 2) (9). The relationships between tumor radiocurability and cellular radiation sensitivity in vitro are analyzed in Fig. 2. \(SF_2 \) in vitro, \(SF_{2+2} \) in vitro, and \(SF_4 \) in vitro (low dose rate) are plotted versus \(\text{TCD}_{50} \). The rank order of the melanoma lines, i.e., M. F. > E. F. > G. E., was the same for \(\text{TCD}_{50} \) and the cell surviving fraction in vitro, irrespective of the in vitro parameter considered. \(\text{TCD}_{50} \) showed a significant correlation with \(SF_2 \) in vitro (\(P < 0.01 \)) and a marginally significant correlation with \(SF_4 \) in vitro (low dose rate) (\(P \sim 0.05 \)), whereas the relationship to \(SF_{2+2} \) in vitro was not significant (\(P > 0.10 \)), as revealed by parametric statistical tests.

DISCUSSION

The radiocurability of 3 human melanoma xenograft lines was measured by treating tumors with multiple fractions of 2.0 Gy and using local tumor control at 180 days as end point. The \(\text{TCD}_{50} \) was found to be correlated with \(SF_2 \) in vitro. Local tumor control determined experimentally in laboratory animals is directly analogous to curative intent in clinical radiation therapy. Long-term survival of cancer patients is significantly improved when local control of the primary tumor and regional disease is achieved (16). Thus, radiobiological studies of experimental tumors using \(\text{TCD}_{50} \) assays have greater relevance to clinical radiation therapy than do studies using any of the other common assays.

Comparisons with Theoretical \(\text{TCD}_{50}s \). The 3 melanoma xenograft lines have been characterized in detail with respect to cellular radiation sensitivity; cell surviving fractions have been

![Graph](image-url)
Table 3 Parameters derived from SF\textsubscript{2} in vitro

<table>
<thead>
<tr>
<th>Melanoma</th>
<th>TCD\textsubscript{50} (Gy)</th>
<th>D\textsubscript{0} (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. F.</td>
<td>30.7 ± 6.5*</td>
<td>1.96 ± 0.41</td>
</tr>
<tr>
<td>G. E.</td>
<td>16.6 ± 3.2</td>
<td>1.17 ± 0.23</td>
</tr>
<tr>
<td>M. F.</td>
<td>39.0 ± 10.1</td>
<td>2.58 ± 0.67</td>
</tr>
</tbody>
</table>

* Mean ± SE.

Table 4 Parameters derived from tumor cell survival curves

<table>
<thead>
<tr>
<th>Melanoma</th>
<th>Conventional fractionation</th>
<th>Superfractionation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCD\textsubscript{50} (Gy)</td>
<td>D\textsubscript{0} (Gy)</td>
</tr>
<tr>
<td>E. F.</td>
<td>99.3 ± 53.0*</td>
<td>6.33 ± 3.38</td>
</tr>
<tr>
<td>G. E.</td>
<td>51.6 ± 6.8</td>
<td>3.64 ± 0.48</td>
</tr>
<tr>
<td>M. F.</td>
<td>111.9 ± 10.9</td>
<td>7.41 ± 0.72</td>
</tr>
</tbody>
</table>

* Mean ± SE.

Fig. 2. SF\textsubscript{2} in vitro (○), SF\textsubscript{2+2} in vitro (■), and SF\textsubscript{4} in vitro (low dose rate) (A) versus TCD\textsubscript{50} for 3 human melanoma xenograft lines. The tumors were irradiated with 2.0-Gy fractions. Points, mean; bars, SE.

measured in vitro after irradiation of tumor cell suspensions in vitro and solid tumors in vivo (9, 13, 14). Comparisons of measured TCD\textsubscript{50} with theoretical TCD\textsubscript{50} calculated from tumor cell survival curves are useful in attempts to find the radiobiological parameters which are decisive for the measured TCD\textsubscript{50} (11, 17). Theoretical TCD\textsubscript{50} were therefore calculated from tumor cell survival curves using the formula described by McNally and Sheldon (18).

\[
\text{TCD}_{50} = D_0 \left(\ln n - \ln \frac{\ln 2}{N} \right)
\]

This equation is based on the assumptions that the tumor cell survival (S) curve at high radiation doses has the form

\[
S = n \cdot \exp(-D/D_0)
\]

and the tumors can recur from one cell. The number of clonogenic cells per tumor (N) for tumors with a volume of approximately 400 mm\(^3\) has been measured experimentally to be 4.5 \times 10\(^6\) (E. F.), 1.0 \times 10\(^6\) (G. E.), and 2.5 \times 10\(^6\) (M. F.) (13).

Table 3 shows theoretical TCD\textsubscript{50} and D\textsubscript{0} for fractionated irradiation calculated from SF\textsubscript{2} in vitro, i.e., from survival curves of the form \(S = (SF_2)^N\), where \(N\) is the number of 2.0-Gy fractions and \(2N\) is the radiation dose. The TCD\textsubscript{50} and D\textsubscript{0} in Table 3 are considerably lower than the measured TCD\textsubscript{50} and D\textsubscript{0}, suggesting that tumor radiocurability was not governed solely by SF\textsubscript{2} in vitro.

Table 4 shows theoretical TCD\textsubscript{50} and D\textsubscript{0} derived from in vitro cell survival curves measured for tumors irradiated with multiple fractions of 2.0 Gy in vivo (Fig. 2 in Ref. 9). Two different survival curves were analyzed for each melanoma line, one pertaining to a conventional and the other to a superfractionation regimen. The conventional regimen consisted of 5 fractions of 2.0 Gy each week, one fraction each weekday. The total treatment time was varied from 1 to 3 wk; i.e., total doses of 10, 20, and 30 Gy were used. In the superfractionation regimen, 3 fractions of 2.0 Gy with 4-h intervals were given each day. The total treatment time was varied from 2 to 5 days; i.e., the total doses used were 12, 18, 24, and 30 Gy. The parameters of the tumor control curves for fractionated irradiation (Table 1) can for all lines be seen to be within the same range as those derived from the two tumor cell survival curves (Table 4). The slightly higher D\textsubscript{0} in Table 1 than for superfractionation in Table 4 can probably be attributed to tumor heterogeneity. The data in Tables 1 and 4 thus suggest that the radiobiological parameters which were decisive for tumor radioresponsiveness also were governing tumor radiocurability.

Prediction of Tumor Radiocurability. Previous work with the same 3 and 2 other melanoma xenograft lines has shown that tumor radioresponsiveness is correlated with SF\textsubscript{2} in vitro (9). Radiation treatment was given in 2.0-Gy fractions according to the conventional and the superfractionation regimens described above. No correlations were found when tumor radioresponsiveness was analyzed against growth and microenvironmental parameters, e.g., volume-doubling time, fraction of cells in G1-G0, S, and G2 + M, growth fraction, cell loss factor, potential doubling time, volume fraction of necrosis, fraction of radiobiologically hypoxic cells, and capillary density (9). The radioresponsiveness of the tumors could not be explained solely from SF\textsubscript{2} in vitro; the tumors were too resistant in vivo. This was mainly due to repopulation between radiation fractions, although hypoxia (19) and potentially lethal damage (PLD) repair (20) also might have contributed somewhat to the resistance in vivo. The repopulation did not differ significantly among the melanoma lines\(^4\) and therefore did not influence their rank order in radioresponsiveness, only the absolute level.

This work has shown that also the radiocurability of tumors treated with multiple 2.0-Gy fractions is correlated with SF\textsubscript{2} in vitro. However, SF\textsubscript{2} in vitro is not the only radiobiological parameter that exerted an influence on TCD\textsubscript{50}; tumor radiocurability was probably governed by the same parameters as those governing tumor radioresponsiveness (Tables 1, 3, and 4), i.e., the rate of repopulation during the treatment period in addition to SF\textsubscript{2} in vitro. This suggests that the repair and proliferative capacity of the surviving clonogenic tumor cells did not change significantly throughout the course of a complete fractionated treatment; measurement of tumor radioresponsiveness was based on 5 to 15 fractions, whereas the TCD\textsubscript{50} corresponded to 30 to 50 fractions.

The 3 melanoma lines studied here differed considerably in tumor radiocurability, mainly as a consequence of cellular differences in the capacity to repair radiation damage. The present

results strongly support the suggestions of Fértil and Malaise (5) and Deacon et al. (4) that the clinical radiocurability of tumors may be positively correlated with the initial slope of their in vitro cell survival curves. Clinical investigations of the predictive value of SF$_2$ in vitro have been initiated for squamous cell carcinoma of the head and neck (6) and of the uterine cervix (8), and similar studies involving other histological types of cancer should be encouraged. However, such studies should also include explorations of the predictive value of cell proliferation parameters, for example, by using flow cytometric techniques similar to those described by Begg et al. (21).

ACKNOWLEDGMENTS

The skillful technical assistance of B. Mathiesen, G. A. Birkeland Olsen, K. Baekken, and H. Stageboe Petersen is gratefully acknowledged.

REFERENCES

Influence of Cellular Radiation Sensitivity on Local Tumor Control of Human Melanoma Xenografts Given Fractionated Radiation Treatment

Einar K. Rofstad

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/51/17/4609

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/51/17/4609.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.