Experimental Antitumor Activity of Taxotere (RP 56976, NSC 628503), a Taxol Analogue

Marie-Christine Bissery,2 Daniel Guénard, Françoise Guéritte-Voegelein, and François Lavelle

Rhône-Poulenc Rorer, Centre de Recherche de Vitry-Alfortville, 94403 Vitry sur Seine [M-C. B., F. L.J, and Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette [D. G., F. G-V.], France

ABSTRACT

Taxotere (RP 56976; NSC 628503; N-debenzoyl-N-tert-butoxycarbonyl-10-deacetyl taxol) is a new microtubule stabilizing agent. It is obtained by semisynthesis from a nontoxic precursor extracted from the needles of the tree, Taxus baccata L. Taxotere was evaluated for antitumor activity against a variety of transplantable tumors of mice. Taxotere had no marked schedule dependency and was found active by the i.v. and the i.p. routes. Upon i.v. administration, 9 of 11 tumor models tested responded to Taxotere. B16 melanoma was found highly sensitive to Taxotere, with a tumor growth inhibition of 0% and a 3.0 log10 tumor cell kill at the maximum tolerated dose. In the same trial, taxol produced only a 1.1 log10 tumor cell kill at the maximum tolerated dose. Taxotere cured early stage pancreatic ductal adenocarcinoma 03 (6 of 6 cures) and colon adenocarcinoma 38 (7 of 7 cures). It also effected greater than 80% complete regressions of advanced stage disease with both tumors. Taxotere was active against early and advanced stage colon adenocarcinoma 51, with 2.3 and 1.7 log10 cell kill, respectively. Four other tumors responded to a lesser extent: Lewis lung (5.5% tumor growth inhibition), Glasgow osteogenic sarcoma (27.2% tumor growth inhibition), L1210 and P388 leukemias (70 and 54% increase in life span, respectively). Because of its good preclinical activity and its unique mechanism of action, Taxotere has entered Phase I clinical trials.

INTRODUCTION

In the late 1960s, a crude alcohol extract of bark from the Pacific yew, Taxus brevifolia L., tested by the Division of Cancer Treatment at the NCI,1 showed cytotoxicity in vitro, and efficacy in vivo against transplantable leukemias of mice (1–3). In 1971, Wani et al. (2) isolated and characterized taxol, the active principle of the extract. Taxol is a mitotic spindle poison (4), that stabilizes microtubules and inhibits their depolymerization to free tubulin (5). The recognition of this unique mechanism of action was decisive in pursuing taxol development despite difficulties to obtain an adequate supply.

An analog of taxol, Taxotere [N-debenzoyl-N-tert-butoxycarbonyl-10-deacetyl taxol; RP 56976; NSC 628503; (Fig. 1)], was obtained by semisynthesis at the Institut de Chimie des Substances Naturelles (Gif sur Yvette, France), through a collaborative agreement with the Centre National de la Recherche Scientifique. It was prepared from a nontoxic precursor extracted from the needles of Taxus baccata L., 10-deacetyl baccatin III, which was then condensed by esterification with the side chain prepared by chemical synthesis (6–8).

Taxotere was first selected by using a tubulin test (9) and was found to inhibit microtubule depolymerization (10). It was then shown cytotoxic in vitro against P388 leukemia cells, and initial in vivo experiments proved Taxotere to be more active than taxol (11).

These encouraging results, together with the development of an efficient semisynthesis process using a renewable source of natural precursor, led to broader preclinical testing. The work reported herein presents the in vivo antitumor activity of Taxotere against a wide variety of transplantable tumors of mice with different biological properties and chemosensitivities (12).

MATERIALS AND METHODS

Drugs

Taxotere (RP 56976, NSC 628503) was first dissolved in ethanol, then polysorbate 80 was added and the final dilution of Taxotere was obtained with 5% glucose in water (5/5/90; v/v/v). The pH of the final solution was 5. It was injected i.v., 0.4 ml/mouse. Taxol (NSC 125973) was obtained from the National Cancer Institute (Bethesda, MD). It was prepared as described above for Taxotere, and injected in the same volume. Reference compounds were obtained from various suppliers: cyclophosphamide (Laboratoire Lucien, Colombes, France); 5-fluorouracil (Laboratoire Roche, Neuilly sur Seine, France); doxorubicin (Laboratoire Roger Bellon, Neuilly sur Seine, France, and Mead Johnson, Evansville, IN); cis-platinum (Laboratoire Roger Bellon). All reference compounds were prepared in 5% glucose in water, except for cis-platinum, which was prepared in 0.9% sodium chloride solution, pH 4.5. The volume of injection for all reference compounds was 0.2 ml/mouse.

Mice

Male and female DBA/2, C57BL/6, and C57BL/6 female × DBA/2 male hereafter called B6D2F, mice were bred at IFFA CREDO (L’Abresle, France) from strains obtained from The Jackson Laboratory, Bar Harbor, ME. Male and female C3H/Hen, BALB/c, and BALB/c female × DBA/2 male hereafter called CD2F, mice, were bred at Charles River (Cléon, France) from strains obtained from Charles River Laboratories, Wilmington, MA. Mice were over 18 g at start of chemotherapy. They were supplied food (UAR Reference 113, Epinay sur Orge, France) and water ad libitum.

Tumor Models

The tumors used for in vivo evaluation were: B16 melanoma (B16) (13); colon adenocarcinomas 38 (C38), and 51 (C51); colon carcinoma 26 (C26) (14); pancreatic ductal adenocarcinoma 03 (P03) (15); mammary adenocarcinoma 16/C (MA 16/C) (16); Lewis lung carcinoma (3LL) (17); Glasgow osteogenic sarcoma (GOS) (18); M5076 histiocytosarcoma (M5076) (19); P388 lymphocytic leukemia (P388), and L1210 lymphoid leukemia (L1210). The tumors used for cross-resistance evaluation were: P388 leukemia resistant to doxorubicin (P388/Dox), P388 leukemia resistant to vincristine (P388/Vcr), L1210 resistant to cis-platinum (L1210/CisDDP), L1210 resistant to BCNU (L1210/BCNU) (20). These tumors are in the National Cancer Institute frozen tumor repository, maintained at the Frederick Cancer Research Facility (Frederick, MD), and have a code identification number, a detailed description, and a list of references.

Tumors were maintained in the mouse strain of origin, i.e., C57BL/
Fig. 1. Taxotere (RP 56976, NSC 628503); N-debenzyol-N-tert-butoxycarbonyl-10-deacetyl taxol.

6 (C38, P03, B16, 3LL, GOS, M5076), BALB/c (C51, C26), C3H/Hen (MA 16/C), DBA2 (L1210, P388). Solid tumors were transplanted as s.c. fragments. Leukemias were passaged as weekly i.p. implants. For chemotherapy trials, tumors were transplanted in the strain of origin or in the appropriate F1 hybrid.

In Vivo Solid Tumor Studies

Chemotherapy. The methods of protocol design, chemotherapy techniques, and data analysis have been presented in detail (21–24). Briefly, the animals necessary to begin a given experiment were pooled and implanted s.c. bilaterally with 30- to 60-mg tumor fragments on day 0 with a 12-gauge trocar. Bilateral implants were used to ensure a more uniform tumor burden per mouse and thus reduce the requirement for a greater number of mice per group. For an early stage tumor treatment, the animals were again pooled before distribution to the various treatment and control groups. For an advanced stage treatment, tumors were allowed to grow to the desired size range (animals with tumors not in the desired range were excluded). The mice were then pooled and distributed to the various treatment and control groups. Non-tumor-bearing animals were often matched to tumor-bearing groups and given the same agents by the same route, dose, and schedules. In this way, drug-induced toxicity could be clearly separated from the toxic effects of tumors. Chemotherapy was started 3 to 22 days after tumor transplantation. Each group of mice was treated on the basis of group average weight. Mice were checked daily and adverse clinical reactions were noted. Each group of mice was weighed 3 to 5 times weekly until the weight nadir was reached. Then, groups were weighed once or twice weekly until the end of the experiment. Body weight change data were reported as the maximum treatment-related weight loss.

Tumors were measured with a caliper 2 or 3 times weekly, depending on the tumor growth rate, until the tumor reached 2000 mg or until the animal died. Solid tumor weights (mg) were estimated from two dimensional tumor measurements (mm):

\[
\text{Tumor weight} = \frac{\text{Length} \times \text{width}^2}{2}
\]

The day of death was recorded, and macroscopic examination of the thoracic and abdominal cavities was carried out to assess the probable cause of death. In some cases, tissues samples were submitted for histological evaluation.

A reference drug known to be active for the tumor under investigation was included at two or more dose levels in the majority of the trials to ensure proper tumor chemosensitivity.

End Points for Assessing Solid Tumor Activity. In each trial, four dose levels were evaluated, including at least one dose level that was frankly toxic. Antitumor activity was evaluated at the HNTD which is the highest dosage that can be administered without causing death or undue toxicity. A dosage producing a weight loss nadir $\geq 20\%$, or 20% or more drug deaths, was considered as excessively toxic. Animal body weights included tumor weights.

Tumor Growth Inhibition (T/C Value). For early stage disease, this is the most widely used criterion for the determination of antitumor activity. The tumor weight was determined simultaneously for the treated and the control groups. When the median tumor weight of the control (C) reached approximately 750 to 1500 mg, the median tumor weight of each treated group (T) were determined, including zeros. The T/C value in percentage is calculated as follows:

\[
\frac{\text{T/C} \, (\%)}{= \frac{\text{Median tumor weight of the treated}}{\text{Median tumor weight of the control}} \times 100}
\]

According to NCI standards, a T/C <42% is the minimum level for activity. A T/C <10% is considered as a high antitumor activity level which justifies further development (DN-2 level).

Tumor Growth Delay (T — C Value). The tumor growth delay assays are based on the median time (in days), required for the treatment group (T) and the control group (C) tumors, to reach a predetermined size (usually 750 to 1000 mg). Tumor-free survivors are excluded from these calculations and are tabulated separately. This value is very useful as it allows the quantitation of the tumor cell kill.

Determination of Tumor-doubling Time. Td is estimated from the best fit straight line from a log linear growth plot of the control group tumors in exponential growth (100- to 1000-mg range).

Calculation of Tumor Cell Kill. For s.c. growing tumors, the total \(\log_{10} \) cell kill is calculated from the following formula:

\[
\log_{10} \text{cell kill (gross or total)} = \frac{T - C \text{ value in days}}{3.32 \times Td}
\]

where \(T - C \) is the tumor growth delay in days as defined above, and \(Td \) is the tumor volume-doubling time in days. The conversion of the tumor growth delay values to \(\log_{10} \) cell kill is possible because the \(Td \) of tumors regrowing after treatment approximated the \(Td \) values of tumors in the control mice.

Regression of Advanced Stage Primary Site Tumor. These criteria are used for advanced stage trials. A complete regression is a regression below the limit of palpation. A partial regression is a regression greater than 50% reduction in tumor mass. In the tables, the partial regression column includes complete regressions.

In Vivo Leukemia Studies

Chemotherapy. Hemocytometer counted cells (10⁶ cells/mouse for P388, P388/Dox, P388/Vcr, or 10² cells/mouse for L1210, L1210/CisDDP, L1210/BCNU, suspended in Hanks' medium [Gibco, Cergy-Pontoise, France]) were implanted i.p. (0.5 ml/mouse) in B6D2F1 mice after randomization on day 0. The mice were again randomized into treatment cages. The test agents were injected i.v. starting on day 1, on the basis of average group weight. The treatment duration was 4 days (days 1 through 4). The body weight change was recorded daily during therapy and once a week thereafter. Cause of death was determined by examination of spleen size, liver involvement, and presence or absence of ascites. This visual examination allowed for discrimination between delayed drug deaths and tumor deaths. Non-tumor-bearing animals were often matched to tumor-bearing groups and received the same agents by the same route, dose, and schedules, to clearly separate drug-induced toxicity from leukemia effects.

End Points for Assessing Antileukemic Activity

Percentage of Increase in Life Span. The increase in life span was determined as follows:

\[
\% \text{ of ILS} = \frac{100 \times ([\text{MDD treated tumor-bearing mice}] - [\text{MDD control tumor-bearing mice}])}{\text{MDD control tumor-bearing mice}}
\]

where MDD was the median day of death; \% of ILS was only used for
leukemia trials. According to NCI standards for i.p. tumor/i.p. drug, an ILS ≥ 25% for L1210 and 27% for P388 is the minimum level for activity. An ILS ≥ 50% for L1210 and 75% for P388 is considered a high level of antileukemic activity (DN-2 level). However, the model used in this evaluation is a more difficult one (i.p. tumor, i.v. drug) and any ILS over 40% is considered good leukemia activity.

RESULTS

Schedule Dependency. To evaluate the schedule effect on the total dose that could be injected without undue toxicity, four i.v. administration schedules were tested (Table 1). The intermittent schedules (days 1 and 6, and days 1, 5, 9, 13), allowed the administration of the largest total doses of Taxotere (80.6 and 66.4 mg/kg, respectively). The daily schedule (days 1–8) and the split dose schedule (every 3 h for 3 doses, days 1–6), reduced the total dose that could be administered (49.6 and 36.8 mg/kg of Taxotere, respectively). Thus, the agent is considered schedule independent because of the relatively small difference in total dosage on the different schedules. Historically, a schedule-dependent agent (e.g., amethopterin or 1-β-D-arabino-furanosylcytosine) would have a 10- to 30-fold lower total dosage on the every 3 h for 3 doses on days 1–6 compared to the day-1 and -6 schedule (25).

Evaluation of Taxotere against Solid Tumors

B16 Melanoma. Taxotere and taxol were tested by using an intermittent schedule (days 4, 6, 8, 10) against early stage s.c. B16 melanoma (Table 2). Taxotere was highly active at the HNTD (13.4 mg/kg/injection, total dose, 53.6 mg/kg), with a T/C of 0% and a total log cell kill value of 3. In comparison, the HNTD of taxol was 21.7 mg/kg/injection (total dose, 86.8 mg/kg), with a T/C of 0% but a total log cell kill value of only 1.1. In this trial, cyclophosphamide (included as a positive control) was found highly active at the highest dose tested. Additional studies were performed on mice bearing early stage B16 melanoma to evaluate the effect of the route of administration on the antitumor efficacy of Taxotere (Table 3). At the highest dosage tested, i.p. administration yielded comparable activity to i.v. administration with 3 logs of tumor cell kill. Administration p.o. led to a total loss of Taxotere activity (T/C = 53%), with a total HNTD of 270 mg/kg producing minimal weight loss (3% of the initial body weight). At higher dosages (450–750 mg/kg), the dose-limiting toxicity was gastrointestinal (data not shown).

Colon Adenocarcinoma 51/A. Mice bearing early stage colon adenocarcinoma 51/A were treated with i.v. Taxotere, using an intermittent schedule on days 3, 5, and 7 (Table 6). At the HNTD, 12.7 mg/kg/injection (total dose, 38.1 mg/kg), the T/C was 2.4%, indicating a high level of activity (2.3 log cell kill). The dosage below the HNTD retained activity.

Taxotere was also tested against advanced stage colon 51 (tumors were approximately 70 mg at start of therapy), using an intermittent administration on days 10, 12, and 14. At the HNTD (15.2 mg/kg/injection, total dose, 45.6 mg/kg), colon 51 was still sensitive to Taxotere with a 1.7 log cell kill. cis-Platinum, included as a positive control, was found highly active against advanced stage disease.

Colon Carcinoma 26. Taxotere was administered i.v. to early stage colon 26-bearing mice on a daily schedule on days 1–4. The highest dose tested, 5 mg/kg/injection (total dose, 20 mg/kg) was found modestly active. Although this dosage is low, it produced a 13% body weight loss, indicating that it is close to the highest nontoxic dose. The dosages below were inactive (data not shown).

Pancreatic Ductal Adenocarcinoma 03. Taxotere was administered i.v. every other day for four treatments to mice bearing early stage or advanced stage pancreatic ductal adenocarcinoma 03 (Table 7). Early stage disease (treatment starting on day 3) was found highly sensitive to Taxotere with a 100% cure rate at optimal dosage (20.5 mg/kg/injection, total dose, 82 mg/kg). Advanced stage pancreatic adenocarcinoma 03 (median tumor range, 273–377 mg) was also sensitive to Taxotere at the HNTD (18 mg/kg/injection) with 5 of 6 complete regressions and a log cell kill value of 1.8. However, the dosage below did not retain activity. Doxorubicin, the reference compound for this tumor, was found marginally active against advanced stage disease.

Lewis Lung Carcinoma. Taxotere was injected i.v. on days 3 through 7 to mice bearing Lewis lung carcinoma. The optimal dosage (23.2 mg/kg/injection; total dose, 116 mg/kg) was found active with a 5.5% T/C and a corresponding log cell kill value of 1.2. The two dosages below the optimal dose retained activity (Table 8). Cyclophosphamide, the positive control for this tumor, was found highly active.

Table 1 Evaluation of schedule of administration on Taxotere toxicity

<table>
<thead>
<tr>
<th>Schedule</th>
<th>i.v. dose range (mg/kg/dose)</th>
<th>HNTD (mg/kg/dose)</th>
<th>Total dose (mg/kg)</th>
<th>% of mean wt loss (day of nadir)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days 1, 6</td>
<td>15.5–65</td>
<td>40.3</td>
<td>80.6</td>
<td>11 (12)</td>
</tr>
<tr>
<td>Days 1, 5, 9, 13</td>
<td>6.2–27.6</td>
<td>16.6</td>
<td>66.4</td>
<td>15 (18)</td>
</tr>
<tr>
<td>Days 1–8</td>
<td>2.3–10</td>
<td>6.2</td>
<td>49.6</td>
<td>18 (10)</td>
</tr>
<tr>
<td>Days 1–6</td>
<td>0.33–6.2</td>
<td>2.3</td>
<td>36.8</td>
<td>15 (7)</td>
</tr>
</tbody>
</table>

* B6D2F, male mice were used, average weight 22.4 g, 5 mice per group.

* Every 3 h for 3 doses. The volume of injection was reduced to 0.2 ml injection due to the frequency of injection. The compound was given 3 times/day on days 1–5, and once only on day 6.
Table 2 Comparison of Taxotere and taxol against early-stage B16 melanoma

<table>
<thead>
<tr>
<th>Schedule (days)</th>
<th>Drug death (day of death)</th>
<th>Total dose (mg/kg)</th>
<th>Mean body wt change [g/mouse (day of nadir)]</th>
<th>Median tumor wt [mg on day 11 (range)]</th>
<th>% of T/C, day 11</th>
<th>Time for median tumor to reach 1000 mg (days)</th>
<th>Log cell kill total</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxotere</td>
<td>35</td>
<td>5/5 (12, 13, 3D14)</td>
<td>-6.14 (13)</td>
<td>0 (0-0)</td>
<td>0</td>
<td>23</td>
<td>12.3</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>21.7</td>
<td>86.8</td>
<td>0/5</td>
<td>-3.99 (12)</td>
<td>0 (0-0)</td>
<td>0</td>
<td>20</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>13.4</td>
<td>53.6</td>
<td>0/5</td>
<td>-1.63 (12)</td>
<td>0 (0-151)</td>
<td>0</td>
<td>18</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>8.3</td>
<td>33.2</td>
<td>0/5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>3.0</td>
</tr>
<tr>
<td>Taxol</td>
<td>35</td>
<td>0/5</td>
<td>-6.31 (14)</td>
<td>0 (0-0)</td>
<td>0</td>
<td>18.5</td>
<td>7.8</td>
<td>Toxic</td>
</tr>
<tr>
<td></td>
<td>21.7</td>
<td>86.8</td>
<td>0/5</td>
<td>-0.72 (13)</td>
<td>0 (0-0)</td>
<td>0</td>
<td>15.5</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>13.4</td>
<td>53.6</td>
<td>0/5</td>
<td>-0.86 (7)</td>
<td>120 (0-764)</td>
<td>10</td>
<td>14.2</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>8.3</td>
<td>33.2</td>
<td>0/5</td>
<td>-0.30 (5)</td>
<td>738 (196-964)</td>
<td>63</td>
<td>12.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>180</td>
<td>0/5</td>
<td>-3.21 (16)</td>
<td>0 (0-0)</td>
<td>0</td>
<td>25.2</td>
<td>14.5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>108</td>
<td>0/5</td>
<td>-1.32 (11)</td>
<td>0 (0-0)</td>
<td>0</td>
<td>22.5</td>
<td>11.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Control

<table>
<thead>
<tr>
<th>Total dose (mg/kg)</th>
<th>Drug death (day of death)</th>
<th>Mean body wt change [g/mouse (day of nadir)]</th>
<th>Median tumor wt [mg on day 11 (range)]</th>
<th>% of T/C, day 11</th>
<th>Time for median tumor to reach 1000 mg (days)</th>
<th>Log cell kill total</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>2/5 (14, 18)</td>
<td>-2.49 (14)</td>
<td>0 (0-0)</td>
<td>0</td>
<td></td>
<td></td>
<td>Toxic</td>
</tr>
<tr>
<td>70.5</td>
<td>0/7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HNTD highly active</td>
</tr>
<tr>
<td>43.8</td>
<td>0/7</td>
<td>-2.07 (13)</td>
<td>172 (0-772)</td>
<td>15.1</td>
<td>60.7</td>
<td>15.6</td>
<td>1.2</td>
</tr>
<tr>
<td>200</td>
<td>2/5 (13, 14)</td>
<td>-0.7 (8)</td>
<td>0 (0-108)</td>
<td>0</td>
<td></td>
<td></td>
<td>Toxic</td>
</tr>
<tr>
<td>120</td>
<td>0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HNTD highly active</td>
</tr>
<tr>
<td>72</td>
<td>0/5</td>
<td>+0.32 (8)</td>
<td>288 (0-533)</td>
<td>25.3</td>
<td>64</td>
<td>18.9</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Control

<table>
<thead>
<tr>
<th>Total dose (mg/kg)</th>
<th>Drug death (day of death)</th>
<th>Mean body wt change [g/mouse (day of nadir)]</th>
<th>Median tumor wt [mg on day 49 (range)]</th>
<th>T/C (%)</th>
<th>Time for median tumor to reach 1000 mg (days)</th>
<th>Log cell kill total</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1136 (100-3017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45.1</td>
</tr>
</tbody>
</table>

Table 3 Effect of route of administration on Taxotere activity against B16 melanoma

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Route</th>
<th>Dosage range (mg/kg/dose)</th>
<th>Total dose (mg/kg)</th>
<th>Mean body wt change [g/mouse (day of nadir)]</th>
<th>Median tumor wt [mg on day 11 (range)]</th>
<th>T/C (%)</th>
<th>T - C (days)</th>
<th>Log cell kill total</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days 3, 5, 7, 9</td>
<td>i.v.</td>
<td>40–8.6</td>
<td>144</td>
<td>-3.9 (13)</td>
<td>0</td>
<td>12.2</td>
<td>2.5</td>
<td>Highly active</td>
<td></td>
</tr>
<tr>
<td>Days 3–7</td>
<td>i.v.</td>
<td>30–6.5</td>
<td>18</td>
<td>-3.7 (14)</td>
<td>0</td>
<td>17.5</td>
<td>3.5</td>
<td>Highly active</td>
<td></td>
</tr>
<tr>
<td>Days 3/4–5/7</td>
<td>i.p.</td>
<td>16–3.9/32–7.8</td>
<td>16/32</td>
<td>-2.7 (11)</td>
<td>0</td>
<td>15.4</td>
<td>3.0</td>
<td>Highly active</td>
<td></td>
</tr>
<tr>
<td>Days 3–7</td>
<td>p.o.</td>
<td>150–54</td>
<td>54</td>
<td>-0.7 (8)</td>
<td>53</td>
<td></td>
<td></td>
<td>Inactive</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Evaluation of Taxotere against early-stage colon adenocarcinoma 38

<table>
<thead>
<tr>
<th>i.v. agent</th>
<th>Total dose (mg/kg)</th>
<th>Drug death (day of death)</th>
<th>Mean body wt change [g/mouse (day of nadir)]</th>
<th>Median tumor wt [mg on day 49 (range)]</th>
<th>T/C (%)</th>
<th>Time for median tumor to reach 1000 mg (days)</th>
<th>Log cell kill total</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxotere</td>
<td>38</td>
<td>3, 5, 7</td>
<td>114</td>
<td>2/5 (14, 18)</td>
<td>-2.49 (14)</td>
<td>0 (0-0)</td>
<td>0</td>
<td>3/5</td>
</tr>
<tr>
<td></td>
<td>23.5</td>
<td>70.5</td>
<td>0/7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7/7</td>
</tr>
<tr>
<td></td>
<td>14.6</td>
<td>43.8</td>
<td>0/7</td>
<td>-2.07 (13)</td>
<td>172 (0-772)</td>
<td>15.1</td>
<td>60.7</td>
<td>15.6</td>
</tr>
<tr>
<td>5-Fluorouracil</td>
<td>100</td>
<td>3, 7</td>
<td>200</td>
<td>2/5 (13, 14)</td>
<td>-0.7 (8)</td>
<td>0 (0-108)</td>
<td>0</td>
<td>3/5</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>120</td>
<td>0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HNTD highly active</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>72</td>
<td>0/5</td>
<td>+0.32 (8)</td>
<td>288 (0-533)</td>
<td>25.3</td>
<td>64</td>
<td>18.9</td>
</tr>
</tbody>
</table>

Control

<table>
<thead>
<tr>
<th>Total dose (mg/kg)</th>
<th>Drug death (day of death)</th>
<th>Mean body wt change [g/mouse (day of nadir)]</th>
<th>Median tumor wt [mg on day 49 (range)]</th>
<th>T/C (%)</th>
<th>Time for median tumor to reach 1000 mg (days)</th>
<th>Log cell kill total</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1136 (100-3017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45.1</td>
</tr>
</tbody>
</table>

Glasgow Osteogenic Sarcoma. Taxotere was administered i.v. on a daily schedule (days 3–7) against early stage Glasgow osteogenic sarcoma. The HNTD, 18.6 mg/kg/injection (total dose, 93 mg/kg), caused a 13% body weight loss and was found marginally active with 27.2% T/C. The dosages below (11.5 and 7.1 mg/kg/injection) were inactive (data not shown).

M5076 Histiocytosarcoma. Taxotere was tested against early stage M5076 and was given i.v. on days 3–7. The highest nontoxic dose (8.6 mg/kg/injection) produced an 11% body weight loss and was found inactive with a 51% T/C (data not shown).

Mammary Adenocarcinoma 16/C. Mice bearing early stage mammary 16/C were treated i.v. with Taxotere on days 3, 5, and 7. The HNTD (14.4 mg/kg/injection; total dose, 43.2 mg/kg) produced a 14.8% body weight loss and was found inactive with a 47.5% T/C (data not shown).

Evaluation of Taxotere against Leukemias

Taxotere was tested against P388 and L1210 leukemias (data not shown). The leukemic cells were implanted i.p. and Taxotere was administered i.v. days 1–4. The HNTD were 23.2 mg/kg/injection (total dose, 92.8 mg/kg) for P388 leukemia and 21.7 mg/kg/injection (total dose, 86.8 mg/kg) for L1210 leukemia and produced a 54 and a 70% increase in life span, respectively.
The median control tumors to reach 750 mg was 26.5 days. 3D25, 26, 2 deaths on day 25, 1 death on day 28.

The time for the median control tumors to reach 750 mg was 22.5 days for both schedules. Schedule C started on day 18: the median tumor size at start of therapy was 120 mg for schedule C, and the time for

At the HNTD, Taxotere produced an average body weight loss of 13%. The weight loss nadir usually occurred 4 to 5 days after the last treatment. Host recovery time was in direct relation to the extent of the weight loss and ranged from 4 to 18 days with a median 8 days postnadir, which is considered moderate host recovery. Once pretreatment weight was reached, mice gained in body weight and in skeletal size (7 g over 150 days post-tumor implantation as observed in the 2 trials with tumor-free survivors, early stage colon 38, and early stage P03).

Cross-resistance of doxorubicin- and vincristine-resistant P388 leukemias, and cis-platinum- and BCNU-resistant L1210 leukemias, with Taxotere was evaluated and Taxotere was found inactive against the 4 resistant leukemia sublines at optimal dosages (data not shown).

Toxicity and Host Recovery

At the HNTD, Taxotere produced an overall body weight loss of 13%. The weight loss nadir usually occurred 4 to 5 days after the last treatment. Host recovery time was in direct relation to the extent of the weight loss and ranged from 4 to 18 days with a median 8 days postnadir, which is considered moderate host recovery. Once pretreatment weight was reached, mice gained in body weight and in skeletal size (7 g over 150 days post-tumor implantation as observed in the 2 trials with tumor-free survivors, early stage colon 38, and early stage P03). At these dosages, mice held for more than 200 days did not display any sign of delayed toxicity, as evaluated by gross and microscopic observations. The agent did not cause any tissue necrosis even on an every-3-h-for-3-dose-day 1-6 schedule. A review of all trials performed showed that the mean optimal total dose was 80 mg/kg (range, 38-96 mg/kg) and depended on the mouse strain used, BALB/c and C3H/Hen mice being more sensitive to Taxotere toxicity than C57BL/6 and B6D2F1 mice.

At frankly toxic individual dosages, in cases excluding death, toxicity based on the total body weight loss above 20% which is considered excessively toxic by NCI standards.

Cross-resistance of doxorubicin- and vincristine-resistant P388 leukemias, and cis-platinum- and BCNU-resistant L1210 leukemias, with Taxotere was evaluated and Taxotere was found inactive against the 4 resistant leukemia sublines at optimal dosages (data not shown).

Toxicity and Host Recovery

At the HNTD, Taxotere produced an overall body weight loss of 13%. The weight loss nadir usually occurred 4 to 5 days after the last treatment. Host recovery time was in direct relation to the extent of the weight loss and ranged from 4 to 18 days with a median 8 days postnadir, which is considered moderate host recovery. Once pretreatment weight was reached, mice gained in body weight and in skeletal size (7 g over 150 days post-tumor implantation as observed in the 2 trials with tumor-free survivors, early stage colon 38, and early stage P03). At these dosages, mice held for more than 200 days did not display any sign of delayed toxicity, as evaluated by gross and microscopic observations. The agent did not cause any tissue necrosis even on an every-3-h-for-3-dose-day 1-6 schedule. A review of all trials performed showed that the mean optimal total dose was 80 mg/kg (range, 38-96 mg/kg) and depended on the mouse strain used, BALB/c and C3H/Hen mice being more sensitive to Taxotere toxicity than C57BL/6 and B6D2F1 mice.

At frankly toxic individual dosages, in cases excluding death,
Taxotere was tested against syngeneic transplantable tumors of mice representing a variety of tissue types and chemosensitivity patterns to evaluate its breadth of activity. Clearly, Taxotere had a good spectrum of efficacy against transplantable leukemias and solid tumors at maximum tolerated dosages, and in most cases efficacy was seen at multiple dosage levels. Nine of the 11 tumors tested responded to Taxotere. Six of them showed clear superiority of Taxotere, as the total logic cell kill was 2.1 times greater for Taxotere than for taxol, at equitoxic dosages.

Taxotere was found active against the three colon tumors tested. The most responsive one was the 5-fluorouracil-sensitive colon 38 with 100% cure rate of early stage disease, and complete regressions of advanced stage tumors. It was also active against the slow-growing, mucin-producing, adenocarcinoma colon 51 at both an early and advanced stage. This tumor forms metastases to lymph nodes and lungs, and is mostly sensitive to alkylating agents. Modest activity was found against the undifferentiated colon adenocarcinoma 26.

Another very sensitive tumor to Taxotere was the pancreatic ductal adenocarcinoma 03. This slow-growing adenocarcinoma is mostly sensitive to doxorubicin and was cured at an early stage by Taxotere. Complete regressions of advanced stage disease could also be obtained.

Taxotere was also active to a lesser extent against a variety of other tumors: Lewis lung carcinoma, Glasgow osteogenic sarcoma, and L1210 and P388 leukemias. Taxotere was found inactive against M5076 histiocytosarcoma and mammary 16/C adenocarcinoma.

Evaluation of Taxotere against tumors with acquired resistance revealed that P388/Dox, P388/Vcr, L1210/BCNU, and L1210/CisDDP were markedly cross-resistant to Taxotere. Similar cross-resistance was reported for taxol with P388/Dox and P388/Vcr (3), and was later related to multidrug resistance (26). Interestingly, Taxotere was found more potent than taxol against a taxol-resistant cell line, J7.TAX-50, in vitro (27).
Taxotere was found active i.p. and i.v. against s.c. implanted tumors, indicating that it crosses physiological barriers well. However, it was found inactive by the p.o. route. This was not unexpected as the three esters and the oxetane ring system on the molecule could be cleaved by stomach acid.

Based on our results, Taxotere seems to belong to the schedule-independent drug category, because the schedule of administration does not influence markedly the total dosage that can be administered (22, 27). The antitumor activity correlates with the total dosage that can be administered, and dose splitting does not appreciably change efficacy. Examples of drugs belonging to this category are doxorubicin, vincristine, cyclophosphamide, and 5-fluorouracil. Although Taxotere is not markedly schedule dependent, the best host recovery occurred with the most-spaced dosage schedule.

At the HNTD, Taxotere produced only body weight loss, and there was no delayed toxicity. The host recovery time was the most-spaced dosage schedule.

Also inhibit tubulin polymerization but their binding to tubulin occurs at a different site from that of the Vinca alkaloids (28). Taxol binds preferentially to microtubules, promotes their assembly, and stabilizes them in vitro (29). Taxotere mechanism of action is similar to that of taxol; in vitro, it inhibits cell replication, promotes the assembly of microtubules, and induces the formation of microtubule bundles (27). The concentration required to provide 50% inhibition of microtubule disassembly was found to be approximately 2 times less for Taxotere than for taxol (10). The difference between the mechanism of action of Vinca alkaloids and Taxotere is also observed when comparing their in vivo spectrum of antitumor activity (Table 9) (30). Vincristine is mostly active against leukemias and has a limited solid tumor activity spectrum, with no activity against B16 melanoma and Glasgow osteogenic sarcoma, and only marginal activity against colon adenocarcinomas 38 and 51. Taxotere has a greater spectrum of activity than vincristine, and can achieve regression of advanced stage disease.

We investigated Taxotere activity against CisDDP-sensitive and -insensitive tumors, because of an earlier clinical report showing taxol antitumor efficacy in ovarian carcinomas (31–33), some of which clearly refractory to CisDDP (a reference drug for this disease). Our results indicated that Taxotere was active against both CisDDP-sensitive (C51, GOS, Lewis lung) and CisDDP-refractory tumors (advanced stage P03 and C38). But Taxotere was also inactive on a CisDDP-sensitive tumor (M5076) and on a tumor with acquired resistance to CisDDP (L1210/CisDDP). Therefore we cannot generalize on Taxotere activity on CisDDP-sensitive and CisDDP-insensitive tumors. These results underline the well-known fact that each independently arising tumor is a unique biological entity with its own pattern of chemosensitivity (34).

In conclusion, Taxotere, obtained through the development of an efficient semisynthesis process using a renewable source of natural precursor, represents a truly new chemical entity with a unique mechanism of action, and a broad spectrum of antitumor activity different from that of other clinically available spindle poisons. This agent is currently undergoing Phase I clinical trials in Europe and in the United States of America.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the technical assistance of the staff of the Experimental Therapeutic Laboratory of the Oncology Unit, Monique Avazeri, Gisèle Baudry, Marie-Christine Brias, Rachel Gales, Janine Pelette, Véronique Romaska; the histology evaluation of Dr. Jean-Michel Caillaud; and the secretarial assistance of Catherine...
Bourgeon and Lisette Ramdani. We also would like to thank Dr. Omar Yoder from the National Cancer Institute for providing taxol.

REFERENCES

Experimental Antitumor Activity of Taxotere (RP 56976, NSC 628503), a Taxol Analogue

Marie-Christine Bissery, Daniel Guénard, Françoise Guéritte-Voegelein, et al.

Updated version

Access the most recent version of this article at:

http://cancerres.aacrjournals.org/content/51/18/4845

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.