Role of Folylpolyglutamates in Biochemical Modulation of Fluoropyrimidines by Leucovorin

Antonella Romani,1 James T. Lin,2 Donna Niedzwiecki, Marlene Bunni, David G. Priest, and Joseph R. Bertino4

Department of Molecular Pharmacology [A. R., J. T. L., J. R. B.] and Division of Biostatistics [D. N.], Memorial Sloan-Kettering Cancer Center, New York, New York 10021, and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425 [M. B., D. G. P.]

ABSTRACT

The growth-inhibitory effect of fluoropyrimidines combined with a short-term exposure to leucovorin and the pattern of polyglutamylation of folates were compared between parental CCRF-CEM cells and a cell line with impaired ability to form polyglutamates (CCRF-CEM/P). The combination of leucovorin with 5-fluorouracil or 5-fluorodeoxyuridine increased the growth inhibition of CCRF-CEM cells compared to the fluoropyrimidine alone in the parental cell line but not in CCRF-CEM/P cells. In addition, leucovorin produced a significant increase in the inhibition of intracellular thymidylate synthase activity caused by 5-fluorouracil or 5-fluorodeoxyuridine as compared to these drugs alone in CCRF-CEM cells, but no increase in inhibition over that produced by the single drugs alone was observed in CCRF-CEM/P cells. Although levels of N7,N10-methylene tetrahydrofolate after leucovorin administration were similar in both cell lines, polyglutamylation of this coenzyme was decreased in the CCRF-CEM/P cell line. The inability of CCRF-CEM/P cells to form significant levels of polyglutamates of N7,N10-methylene tetrahydrofolate, may be responsible for the lack of enhanced cell kill observed when a short exposure to leucovorin is used with fluoropyrimidines.

INTRODUCTION

One of the most commonly used regimens for the treatment of patients with metastatic colorectal cancer is 5-fluorouracil (FUra)3 and high doses of leucovorin (LV) (1, 2). The rationale for this biochemical modulation is to provide the cells with large amounts of reduced folates, in an attempt to increase the intracellular levels of N7,N10-methylene tetrahydrofolate (CH2FH4) and its polyglutamate forms (3, 4). The affinity of CH2FH4, the cofactor required for the formation of the ternary complex with thymidylate synthase (TS) and fluorodeoxyuridylate (FdUMP) (5), increases with the number of glutamate residues associated with the folate (6). LV has been shown to increase the cytotoxicity of fluoropyrimidines in some cell lines (7, 8), and several randomized clinical trials have reported an increased rate of response with this combination over using FUra alone (9, 10). However, the majority of patients still do not respond to this regimen. Possible reasons of failure may be a lack of formation (11) or a deficiency in polyglutamylation of this folate cofactor (6). In the latter case, a short exposure to LV could fail to be effective because accumulated folates could rapidly efflux from the cells or could yield a less active cofactor for stabilization of the inhibitory complex (6). We compared the effect of the LV/fluoropyrimidine combination in CCRF-CEM (12) and in a methotrexate (MTX)-resistant subline of these cells, CCRF-CEM/P, which is impaired in its ability to polyglutamate MTX and folates (13, 14). As compared to the parental cells, the methotrexate-resistant cell line is less sensitive to the LV/fluoropyrimidine drug combination. Both CCRF-CEM/P and the parental line accumulate CH2FH4 in the presence of LV in a dose-dependent manner. However, the MTX-resistant cell line is less able to form longer chain length polyglutamates. The implications of this observation for clinical treatment is discussed.

MATERIALS AND METHODS

Chemicals. FUra and FdUrd were purchased from Sigma Chemical Co, St. Louis, MO. LV was obtained from Lederle, Pearl River, NY. 2'-[5-3H]Deoxyuridine, (6H)FUMP (20 Ci/mmol) were purchased from Moravek Biochemicals, Brea, CA, and the purity of the radiolabeled LV and FdUMP were confirmed by high pressure liquid chromatography. An Escherichia coli strain that over-produces Lactobacillus casei TS was a gift from D. Santi, University of California, San Francisco, CA. TS was purified by a modification of the method of Pinter et al. (15). Folic acid polyglutamate standards with two to seven residues were obtained from C. M. Baugh, University of South Alabama, Mobile, AL, and were reduced to the corresponding tetrahydrofolates with L casei dihydrofolate reductase and NADPH (16). Media, sera, and antibiotics for cell culture were obtained from Grand Island Biological Co., NY, and plastic ware was obtained from Corning Glass Works, Corning, NY.

Cell Lines. CCRF-CEM cells were from a cloned subline of the human T-lymphoblast cell line described by Foley et al. (12). CCRF-CEM/P cells were obtained after selection with 3 μM MTX for seven cycles as described by Pizzorno et al. (13). These cells have a marked defect in their ability to form polyglutamates of MTX, and a moderate difference in their ability to form polyglutamates of folates, as a consequence of an alteration in the folylpolyglutamate synthetase enzyme (14). Cells were maintained as suspension cultures in RPMI 1640 medium (containing 2.3 μM folic acid) supplemented with 10% horse serum, penicillin (100 units/ml), and streptomycin (100 μg/ml) at 37°C in a 5% CO2 atmosphere and subcultured twice a week. Under these conditions the doubling time of exponentially growing cells was 24 h. Both cell lines were periodically confirmed to be Mycoplasma free.

Cell Growth Inhibition Studies. Exponentially growing cells were exposed to drugs at an initial density of about 2 × 10^6 cells/ml. All drugs were dissolved in water and prepared freshly before each experiment. After drug treatment, cells were harvested by centrifugation, washed 3 times with phosphate-buffered saline, and resuspended in drug-free medium supplemented with 10% horse serum at a concentration of about 2 × 10^6 cells/ml. Subsequent changes in cell number were followed over a 5- to 6-day period by using a Model B Coulter Counter (Coulter Electronics, Inc., Hialeah, FL).

TS Activity. A modification of the in situ assay of Yalowich and Kalman (17) as described by Rodenhuis et al. (18) was used to measure TS activity. In brief, 2'-[5-3H]Deoxyuridine is converted to thymidylate, with release of the 5-3H as 3H2O (16). TS activity was assayed at 0, 6, 12, 24, and 48 h. The aliquots, 1 μl, were analyzed for radioactivity. The results were expressed as picomoles of TS per milligram of protein.

Received 6/11/90; accepted 11/15/90.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1Supported by the USPHS (Grants CA 08010 and CA 22754).
2Fellow of the Associazione Italiana per la Ricerca sul Cancro, Milan, and Istituto Nazionale per lo Studio e la Cura dei Tumori, Genova, Italy.
3Normal and Rosina Winston Foundation Clinical Scholar.
4American Cancer Society Professor. To whom requests for reprints should be addressed.
5The abbreviations used are: FUra, 5-fluorouracil; FdUrd, fluorodeoxyuridine; FdUMP, 5-fluoro-2'-deoxyuridine-5'-monophosphate; LV, leucovorin; TS, thymidylate synthase; MTX, methotrexate; FH4, dihydrofolate; FH3, tetrahydrofolate; CH2FH4, N7,N10-methylene tetrahydrofolate; 5-CH2FH4, 5-methyltetrahydrofolate; 10-CH(OH)FH4, 10-formyltetrahydrofolate.

Downloaded from cancerres.aacrjournals.org on April 16, 2017. © 1991 American Association for Cancer Research.
24, and 48 h after exposure to the fluoropyrimidine with or without leucovorin. Cells were exposed to 2'-[5-3H]deoxyuridine (2 μCi/ml) and at 0, 15, 30, and 45 min a 100-μl aliquot of cells was placed in 200 μl of 4% (w/w) trichloroacetic acid with 15% charcoal to stop the reaction. The mixture was centrifuged for 5 min and 100 μl of supernatant were pipetted into 5 ml of Ecolume (ICN) scintillation fluid and counted in a Beckman 5801 scintillation counter. A blank consisting of media without cells or drug was used for background subtraction. The counts were fitted to a straight line by linear regression and the percentage of inhibition was calculated by comparing the slope for treated cells with that for untreated cells.

LV Uptake. Exponentially growing cells (CCRF-CEM and CCRF-CEM/P) were harvested by centrifugation and suspended at a density of 1 to 3 x 10^7 cells/ml in complete medium in the presence of (6SR)-[3',5',7'-3H]LV, generally labeled with a specific activity of 2-5 Ci/mmol, and unlabeled LV to a concentration of 10 μM. One hundred-μl aliquots were taken, in duplicate, at 5, 10, 15, 30, and 60 min and added to an ice-cold solution of 200 μl of 9% sucrose and 700 μl of 0.9% NaCl solution in microfuge tubes, centrifuged for 2 min at 16,000 x g, and washed twice with 1 ml of ice-cold 0.9% NaCl solution. The pellets were resuspended in 500 μl of 5% perchloric acid, boiled for 20 min, centrifuged for 2 min at 16,000 x g, and the entire supernatant was placed in Ecolume liquid scintillation fluid and counted in a Beckman Model 5801 scintillation counter.

Assay of Intracellular Folates. A series of radioenzymatic assays were used to measure FH4, CH2FH4, 5CH2FH4, and 10-CHOFH4 in cell-free extracts (19). These methods are based upon the entrapment of CH2FH4 by TS and [3H]FdUMP to form a stable ternary complex (20). Cells were washed twice with cold PBS and suspended in extraction buffer that contained 50 mM Tris·HCl, 50 mM sodium ascorbate, 1 mM EDTA, and 0.25 mM succrose, pH 7.4. The final concentration of the cells was 2-3 x 10^7 cells/ml. Cells were boiled for 3 min to achieve lysis and to prevent enzymatic cycling during assay. The recovery of known amounts of CH2FH4 added to cell extracts prior to boiling was 94%.

Measurement of CH2FH4 and FH4 Glutamate Chain Length. The polyglutamate chain length distribution of CH2FH4 and FH4 was estimated by the electrophoretic separation of the ternary complex and fluorography of the label (21). Cells (2 x 10^7) were suspended in an extraction buffer described above to give an intracellular CH2FH4 and FH4 concentration of approximately 35 nM. Cells were lysed by freezing and thawing 3 times in dry ice/acetone in the presence of 125 nM [3H]FdUMP and 19 milliunits L. casei TS, to prevent interference caused by hydrolysis of polyglutamates during sample preparation.

Statistical Analysis. To assess the significance of TS activity inhibition, four experimental conditions were compared: FUra versus FdUrd/LV in CCRF-CEM cells and in CCRF-CEM/P cells, and FdUrd versus FdUrd/LV in CCRF-CEM and CCRF-CEM/P cells. The square root transformation was used to stabilize the variance. The Greenhouse-Geisser adjustment to degrees of freedom was used in the F tests for within-subject effects. The Neuman-Keuls' method of multiple comparisons was also used (22). The t test for inequal variances was used when total folates were compared.

RESULTS

Tissue Culture Studies. When CCRF-CEM cells were exposed to LV (10 μM) for 4 h and to FUra (150 μM) during the last 2 h of LV exposure, potentiation of the inhibitory effect of FUra on cell growth was observed (Fig. 1). The addition of LV to FUra did not result in increased inhibition of cell growth in CCRF-CEM/P cells when compared to the cells treated with FUra alone (Fig. 1). Similar effects were observed when 100 μM LV was used (data not shown).

FdUrd (0.5 μM for 2 h) inhibited the growth of both cell lines. Pretreatment with 10 μM LV for 4 h starting 2 h prior to the exposure to FdUrd resulted in prolonged inhibition of cell growth in CCRF-CEM cells (Fig. 2). Potentiation was not observed in CCRF-CEM/P cells treated with FdUrd (0.5 μM) plus LV (10 μM) compared to the cells exposed to FdUrd alone (Fig. 2). Similar effects were seen when 100 μM LV was used (data not shown).

In Situ Thymidylate Synthase Activity Inhibition. Cells (10^7 cells/ml) were exposed to 10 μM LV for 4 h and 0.5 μM FdUrd during the last 2 h of LV exposure. Numbers represent the mean of 3-4 experiments. Standard error was less than 15% for each point. Control (O); LV (I); FUra (A); LV + FUra (A).

LV Uptake. Uptake of 10 μM LV in CCRF-CEM and CCRF-CEM/P cells (Fig. 1). Similar effects were seen when 100 μM LV was used (data not shown).

In Situ Thymidylate Synthase Activity Inhibition. Cells (10^7 cells/ml) were exposed to 10 μM LV for 4 h and 150 μM FUra during the last 2 h of LV exposure. Numbers represent the mean of 3-4 experiments. SE was less than 15% for each point. Control (O); LV (I); FUra (A); LV + FUra (A).

In Situ Thymidylate Synthase Activity Inhibition. Cells (10^7 cells/ml) were exposed to 10 μM LV for 4 h and 150 μM FUra during the last 2 h of LV exposure. Numbers represent the mean of 3-4 experiments. SE was less than 15% for each point. Control (O); LV (I); FUra (A); LV + FUra (A).

LV Uptake. Uptake of 10 μM LV in CCRF-CEM and CCRF-CEM/P cells was similar, with total folate accumulation at 60
min of 22.6 ± 6.9 (SE) pmol/10^6 cells and 32.0 ± 4.8 pmol/10^6 cells, respectively (data not shown).

Estimation of Intracellular Folates. Prior to treatment, total reduced folates, based on the sum of CH2FH4, FH4, FH2, 10-CHO FH4, and 5-CH3 FH4 were 3.1 pmol/10^6 cells for both the parental and the MTX-resistant cell lines. When the parent or the CCRF-CEM/P cell line was exposed to 10 or 100 µM LV for 4 h, the total folates increased approximately 4- and 6-fold, respectively (Fig. 3A).

However, after a further 6-h incubation of cells in folate-free media to allow efflux of folates, the parental cells treated with 10 and 100 µM LV showed 2.8 and 3.1 times, respectively, more intracellular folates than the untreated control, whereas CCRF-CEM/P cells had only 1.6- and 1.3-fold increase in total folates versus the untreated control under the same conditions (Fig. 3B). The amount of total folates retained in CCRF-CEM versus CCRF-CEM/P cells exposed to 100 µM LV for 4 h and incubated in folate-free media for an additional 6 h was also significantly different (P < 0.05).

The levels of CH2FH4 increased to 5 and 11 times the control in CCRF-CEM cells exposed for 4 h to 10 and 100 µM LV, respectively, and increased to 5 and 8 times over base line in CCRF-CEM/P cells exposed for 4 h to 10 and 100 µM LV (Fig. 4A). After 6 h of efflux in folate-free medium, CH2FH4 levels decreased to 2.7 and 3 times higher than in the untreated control in CCRF-CEM cells exposed to 10 and 100 µM LV, respectively, and to 2 times higher than in untreated control in CCRF-CEM/P cells for both the LV doses (Fig. 4B).

Table 1 In situ thymidylate synthase activity in CCRF-CEM and CCRF-CEM/P cells

<table>
<thead>
<tr>
<th>Concentration (µM)</th>
<th>Time (h)</th>
<th>% of control</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUra LV</td>
<td>0</td>
<td>13.2 ± 1.3</td>
</tr>
<tr>
<td>CCRF-CEM</td>
<td></td>
<td>6.8 ± 3.0</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>26.5 ± 1631</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>33.5 ± 19.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>17.3 ± 4.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>25.1 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>31.5 ± 7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.0 ± 3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.2 ± 3.6</td>
</tr>
</tbody>
</table>

Table 2 Percentage of thymidylate synthase activity in CCRF-CEM and CCRF-CEM/P cells

<table>
<thead>
<tr>
<th>Concentration (µM)</th>
<th>Time (h)</th>
<th>% of control</th>
</tr>
</thead>
<tbody>
<tr>
<td>FdUrd LV</td>
<td>0</td>
<td>2.1 ± 2.0</td>
</tr>
<tr>
<td>CCRF-CEM</td>
<td></td>
<td>0.5 ± 0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4 ± 2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4 ± 6.5</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>8.5 ± 8.4</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2.2 ± 2.0</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>11.2 ± 5.6</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>10.1 ± 13.5</td>
</tr>
</tbody>
</table>

DISCUSSION

Polyglutamylated leaves are an essential step in folate metabolism. It enables cells to maintain adequate intracellular folate levels,
and enhances the binding of the various folate cofactors to folate-requiring enzymes (3, 4). The availability of a cell line with impaired ability to polyglutamate folates allowed assessment of the importance of CH₂FH₄ polyglutamate formation as a determinant of fluoropyrimidine growth inhibition. At a dose of FUra or FdUrd which produces only a slight decrease in cell growth, the addition of LV further inhibited the cell growth in CCRF-CEM cells, but not in the MTX-resistant CCRF-CEM/P cells. These data are consistent with the hypothesis that the impaired polyglutamylation of CH₂FH₄ may be responsible for the lack of potentiation of the cytotoxic effect of fluoropyrimidines by LV.

The results obtained with measurements of in situ TS activity were consistent with the growth inhibition studies in that the addition of 10 μM LV for 4 h to either FUra or FdUrd increased the inhibition of TS activity in CCRF-CEM cells but not in CCRF-CEM/P cells.

LV is a reduced folate which is converted to 5,10-methylenetetrahydrofolate by the enzyme 5,10-methylenetetrahydrofolate synthetase and it then enters the folate pathways (23). Methenyl synthetase activity was found to be identical in both the parental and the MTX-resistant cell line. The level of CH₂FH₄ was also approximately the same, and increased in a dose-related manner after exposure to LV in both cell lines, confirming that uptake and synthesis of the cofactor is not impaired in CCRF-CEM/P cells.

CH₂FH₄ with longer chain length polyglutamates binds more tightly to TS than do shorter chain polyglutamates, increasing the stability of the ternary complex (6). Thus, for maximal biochemical modulation with LV, it becomes important not only to increase the amount of folate cofactor in the cells, but also to allow the accumulation of longer chain length polyglutamates. With exposure to 10 μM LV, there is clearly a greater distribution of longer chain polyglutamate forms in CCRF-CEM cells than in CCRF-CEM/P cells at all time points up to 2 h (Fig. 5). In CCRF-CEM/P cells, after LV exposure for 2 h, the amount of time before the cells would be exposed to fluoropyrimidines, predominantly short chain CH₂FH₄ polyglutamates were formed (Fig. 5). Under these conditions, FdUMP would be expected to dissociate more readily from the ternary complex (6), and thus limit the enhancement of fluoropyrimidine cytotoxicity. It should be noted that although it appears that the amount of longer chain length polyglutamates decreases in the CCRF-CEM/P line between 60 and 120 min, this is an artifact due to the fact that each lane is loaded with an equal amount of ternary complex, and thus reflects the qualitative distribution of folate polyglutamates in the cells rather than the actual amounts. Nevertheless, polyglutamylation of CH₂FH₄ and FH₄ is clearly impaired in the CCRF-CEM/P cells exposed to 10 μM LV for 2 h compared to CCRF-CEM cells. The former contains mainly Glu₂ forms, while the latter contains predominantly Glu₄, under the same experimental conditions. Given this difference in distribution of polyglutamate forms, one would also expect better retention of folates in the parent CCRF-CEM cells than in the MTX-resistant CCRF-CEM/P cells, as was shown by the higher folate levels measured in the parent cell line after 6 h in folate-free media (Fig. 3B). The rapid decrease in retained folates in the polyglutamylation-deficient CCRF-CEM/P cells could also be a factor in reducing the efficacy of leucovorin modulation of fluoropyrimidine cytotoxicity in this cell line.

These results have important implications for the clinical use of LV with FUra or FdUrd. Cells unable to increase levels of long chain length CH₂FH₄ polyglutamates (N = 3–7) because of impaired ability to polyglutamate reduced folates, will not express enhanced sensitivity to this combination because the FdUMP-TS-CH₂FH₄ ternary complex formed will dissociate more readily in the absence of these polyglutamates. Both small cell lung cancer cell lines (25) as well as acute myelocytic leukemia cells (26) and sarcoma cell lines (27) are unable to form high levels of MTX-polyglutamates in vitro, and may also be unable to form appreciable levels of folate polyglutamates as well. It is of interest that these human neoplasms are considered to be refractory to fluoropyrimidine therapy (28, 29). We plan to extend these studies to specimens of colorectal carcinoma, to determine if sensitivity or resistance to LV with fluoropyrimidines is correlated with the inability of the patient’s tumor cells to increase levels of CH₂FH₄ polyglutamates after exposure to LV.

REFERENCES

Fig. 5. Polyacrylamide gel electrophoretic separation of polyglutamates complexed with TS and [³H]FdUMP from extracts of CCRF-CEM and CCRF-CEM/P cells. Lanes 1, Glu₂ and Glu₄ standards; Lanes 2, 4, 6, and 8, CCRF-CEM exposed to 10 μM LV for 30, 60, 120, and 15 min, respectively; Lanes 3, 5, 7, and 9, CCRF-CEM/P exposed to 10 μM LV for 30, 60, 120, and 15 min, respectively; Lane 10, CCRF-CEM control; Lane 11, CCRF-CEM/P control; Lane 12, Glu₂ and Glu₄ standards; Lane 13, Glu₂ and Glu₄ standards; Lane 14, Glu₂ and Glu₄ standards. Polyglutamate chain length increases from top to bottom of the gel.

Role of Folylpolyglutamates in Biochemical Modulation of Fluoropyrimidines by Leucovorin

Antonella Romanini, James T. Lin, Donna Niedzwiecki, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/51/3/789

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.