Expression of Cathepsin L in Human Tumors
Shyam S. Chauhan, Lori J. Goldstein, and Michael M. Gottesman

ABSTRACT

It has been proposed that proteases secreted by cancer cells facilitate tumor invasion and metastasis by degrading the components of extracellular membranes. The lysosomal cysteine protease cathepsin L is synthesized in large amounts and secreted by many malignantly transformed cells in culture. The secreted protease is potent in degrading collagen, laminin, elastin, and other structural proteins of basement membranes. To determine whether human cancers synthesize cathepsin L, the expression of cathepsin L in approximately 100 human tumor samples was determined by quantitative RNA slot blot analysis using a specific human cathepsin L complementary DNA probe. Results of the present study suggest that cancers in general express higher levels of cathepsin L than do normal tissues. Kidney and testicular tumors expressed the highest levels of cathepsin L; non-small cell carcinomas of the lung expressed the next highest levels; and most cancers of the breast, ovary, colon, adrenal, bladder, prostate, and thyroid expressed elevated levels as well. Cathepsin L may prove useful as a diagnostic or prognostic marker of human malignancy.

INTRODUCTION

Cathepsin L is a lysosomal acid cysteine protease present in all cell types where it is presumed to be primarily responsible for the degradation and turnover of intracellular proteins (1). Malignantly transformed mouse fibroblasts synthesize and secrete large amounts of cathepsin L, also known as MEPE (2). Its precise role in malignant transformation is not known, but it is a marker of the transformed state in several tissue culture systems (2-4). Human cathepsin L has been cloned and sequenced, indicating that human cathepsin L is encoded by a 1.6- to 1.8-kilobase mRNA which has 70% sequence homology to mouse cathepsin L (5, 6). Cathepsin L of both mice and humans is synthesized as preproenzymes which are processed to the M, 41,000 proenzymes (for humans) or M, 38,000 proenzymes (for mice) which are secreted by many cells (7). Although the primary secreted form of these enzymes is probably inactive, it is rapidly autoactivated to lower molecular weight active forms similar to these found in lysosomes (8, 9).

Several hypotheses regarding the function of secreted cathepsin L in normal physiology and in malignancy have been suggested (10). Roles in antigen presentation (11), bone resorption (12), and sperm maturation (13) have been described. In 50°C formamide, 5x Denhardt’s solution, 0.1% SDS, 100 µg/ml of sheared salmon sperm DNA, and 5x SSC. Simultaneously, a radiolabeled probe was hybridized against control pGEM3 plasmid blotted on a nitrocellulose filter in the above solution containing 10% dextran sulfate. After 16 h this solution containing the radiolabeled probe was used for hybridization of the RNA blot at 42°C for 24 h. Then the blot was washed with 2x SSC-0.2% SDS at room temperature for 10 min followed by two washes with 0.1x SSC-0.1% SDS at 60°C for 30 min each. The blots were exposed to Kodak XOMat film with intensifying screens at -70°C for various periods.

Northern Blotting. The Northern blot analysis was performed as described by Thomas (24) with a slight modification. An aliquot containing 10 µg of RNA was heated to 65°C in 50% formamide, 6% formaldehyde, and 1x electrophoresis buffer (20 mM moriholipropansulfonic acid, 5 mM sodium acetate, and 1 mM EDTA, pH 7.0) for 10 min, immediately chilled on ice, and loaded on a 1.4% agarose gel containing 2.2% formaldehyde and 1x electrophoresis buffer. The gel was run overnight at 50 V, and the RNA was transferred to a 0.22-µm pore size nitrocellulose filter with 10x SSC for 20 h. The RNA was cross-linked to nitrocellulose and processed similarly as described for the slot blots.
RESULTS

The levels of cathepsin L RNA in many human cancers and several normal tissues were quantitated by slot blot analysis. KB 3-1 RNA was included on every blot and used as a reference standard for comparing the cathepsin L RNA levels of tumors on different blots. Cathepsin L message levels so determined were normalized using β-actin mRNA expression as an internal standard to control for variability in RNA quality. Table 1 describes the distribution of cathepsin L RNA in various normal human and mouse tissues. The expression of cathepsin L in single samples of various human tissues in descending order was as follows: liver > lung > kidney > adrenal = colon = intestine = stomach > esophagus. Due to the limited availability of normal human tissues, the levels of cathepsin L RNA in various mouse tissues were also estimated, and the results are shown in Table 1. The pattern of the cathepsin L mRNA distribution in various mouse tissues was similar to that observed in humans except for lung, which displayed higher levels than kidney in humans, but in the mouse, levels in lung were less than those in kidney.

Levels of cathepsin L mRNA in various cancers were also measured by slot blot analysis. Serial dilutions of RNA on blots displayed proportionately decreasing intensity of the signal on autoradiograms. Cathepsin L mRNA was normalized for equal loading of RNA by β-actin message. A typical slot blot analysis is shown in Fig. 1.

The levels of cathepsin L mRNA in various human cancers are summarized in Fig. 2. Kidney and testis tumors were found to express the highest levels of cathepsin L among the types of tumors studied. The average mRNA level for cathepsin L in ovary, stomach, lung, colon, and adrenal tumors was severalfold higher than for normal tissues (Fig. 2). Most of the lung cancers were non-large cell in origin, but a single large cell cancer examined did express high levels of cathepsin L mRNA, with somewhat lower levels in a single small cell carcinoma. Similarly, in the pancreas the levels of cathepsin L RNA were severalfold higher in a single adenocarcinoma as compared with islet cell and other endocrine tumors which are usually benign. Levels of cathepsin L mRNA in breast, bladder, thyroid, and prostate tumors were also high, but we had no normal tissues with which to compare these values. Very little mRNA for cathepsin L was detected in Wilms’ tumors, fibrosarcomas, leukemia, ganglioneuroma, and lymphoma specimens (data not shown).

Northern blot analysis for some tumor RNAs was performed to confirm the size of the message that was detected by the human cathepsin L cDNA probe on the slot blots. The 800-base pair EcoRI fragment from the full-length cDNA of human cathepsin L detected a single 1.8-kilobase band in each case (Fig. 3). The same size mRNA was detected in the KB-3-1 cell RNA sample which was used as reference for comparing the

Table 1. Levels of cathepsin L mRNA in normal mouse and human tissues

<table>
<thead>
<tr>
<th>Organ</th>
<th>Human</th>
<th>Mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>ND</td>
<td>1.1</td>
</tr>
<tr>
<td>Heart</td>
<td>ND</td>
<td>2.8</td>
</tr>
<tr>
<td>Intestine</td>
<td>3.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Kidney</td>
<td>5.0</td>
<td>5.6</td>
</tr>
<tr>
<td>Liver</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Lung</td>
<td>6.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Spleen</td>
<td>ND</td>
<td>1.4</td>
</tr>
<tr>
<td>Stomach</td>
<td>2.0</td>
<td>1.4</td>
</tr>
</tbody>
</table>

* ND, not done.
cathepsin L mRNA of tumors on various blots. The intensity of the bands was comparable to the intensity of the signal for these tumors on slot blots.

DISCUSSION

Several years ago it was demonstrated that malignant transformation of murine cells in tissue culture leads to the over-expression and secretion of a protein which was then named MEP (2, 3). Consequently, MEP was shown to be procathepsin L (25, 26). However, very little information has been available concerning the expression of cathepsin L in human cancers. For this study, we screened a variety of human cancers to determine if overexpression of the cathepsin L gene also occurs in human malignancy. Our results show relatively high expression of the gene for the major excreted protein of transformed mouse fibroblasts, cathepsin L mRNA in many human cancers.

A quantitative slot blot procedure was used to measure cathepsin L mRNA levels in various tumors. The validity of this assay has been confirmed in this work by showing that dilutions of the same RNA sample demonstrate proportional decreases in signal intensity after hybridization with a specific radiolabeled cathepsin L cDNA probe (Fig. 1). β-Actin mRNA was used to normalize for the equal loading and quality of the RNA from different tumors. With this assay we could detect a cathepsin L mRNA signal with as low as 0.3 μg of total RNA from several tumors, indicating it to be a fairly sensitive assay.

The results of the present study demonstrate severalfold higher levels of average cathepsin L mRNA in kidney, testis, colon, and lung tumors (Fig. 1) when compared with normal tissues and increased levels of expression in cancer of the breast, ovary, adrenal, bladder, and prostate. Similar increased expression of cathepsin L mRNA has been observed by Qian et al. (14) in murine tumors of kidney and lung. Increased cysteine protease activity has also been previously reported in gastric tumors, colorectal carcinoma, and breast cancer compared with normal tissues (16, 27–30). Yamaguchi et al. (17) detected significantly higher amounts of cathepsin L in a human pancreatic cancer cell line. Our results show a striking increase in the cathepsin L mRNA levels in a pancreatic adenocarcinoma, whereas some pancreatic endocrine tumors showed no noticeable difference in the cathepsin L RNA (Fig. 2). Cysteine protease activities in gastric adenocarcinomas have been reported to vary with the stage of tumor progression (17), so it is possible that the pancreatic endocrine tumors that showed comparatively low levels of cathepsin L mRNA were either benign, which is usually the case, or at an early stage of malignancy.

Proteases have been thought to play a role in tumor invasion and metastasis due to their destructive effects on extracellular matrix. Cathepsin L is more potent than many other proteases in degrading collagen, elastin, laminin, and other components of the basement membrane. It is secreted by malignant cells, stable to denaturation at neutral pH, and carries mannose 6-phosphate which enables it to be taken up by neighboring cells. In this way, cathepsin L can act as an excellent molecular vehicle for the transport of protease activity. Yagel et al. (31) demonstrated the suppression of amnion membrane invasion of murine cancer cells by cathepsin L inhibitors. Thus, it is conceivable that the higher expression of cathepsin L in colon, lung, and kidney tumors observed in the present study may be responsible, at least in part, for the invasion of these malignant cells. Furthermore, strategies to inhibit cysteine protease activity may have a role in prevention of cancer invasion or metastases.

Recently cathepsin D has been proposed as a prognostic marker for breast cancer (32, 33). Results of the present study indicate that cathepsin L also is expressed at higher levels in many cancerous tissues as compared with normal tissues (Table 1; Fig. 2). Kidney, testis, and lung tumors, in particular, have elevated expression of cathepsin L. The results reported here suggest that more detailed studies should be undertaken to determine if cathepsin L can be used as a diagnostic or prognostic marker for human cancer.

ACKNOWLEDGMENTS

We are thankful to Dwayne Eutsey and Joyce Sharrar for their secretarial assistance.

REFERENCES

EXPRESSION OF CATHEPSIN L IN HUMAN TUMORS

Expression of Cathepsin L in Human Tumors

Shyam S. Chauhan, Lori J. Goldstein and Michael M. Gottesman

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/51/5/1478

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.