DISGUISE AND CONQUER

THE PROBLEMS OF PROTEIN THERAPY...

- Short Circulating Half-lives
 High dosages become necessary to achieve efficacy
 Frequent dosing often required to maintain efficacy
- Immunogenicity
 Hypersensitivity/allergic reactions

Coming Soon

PEGNOLOGY℠
THE NEW WEAPON IN ONCOLOGY

PEG•NOL•O•GY℠ (n. peg nol ȯ je) The science of attaching strands of polyethylene glycol (PEG) to therapeutic proteins. This effectively disguises the proteins, and prevents their recognition by the immune system, thereby lowering immunogenic potential, and extending circulating half-lives from minutes to days.

FOR INFORMATION PLEASE CALL 1-908-668-7707

ENZON, Inc.
Adding Time Is Life®

© ENZON, Inc. 1992
Thomas A. Waldmann, one of the most prominent of the current leaders in clinical cancer research, is the 1992 recipient of the 15th annual Bristol-Myers Squibb Award for distinguished achievement in cancer research. During his 35-year career, Dr. Waldmann has made seminal contributions to the understanding of how the human immune system is regulated and how its disruption can lead to autoimmune, malignant, and immunodeficiency diseases. Most importantly, he has applied insights gained in basic research to benefit patients, particularly the use of monoclonal antibodies for diagnosis and therapy. He demonstrated the excessive endogenous catabolism of IgG immunoglobulins in myotonic dystrophy and of all immunoglobulins in hypercatabolic hypoproteinemia; he made a landmark discovery of suppression of immune responses by human suppressor T-lymphocytes and macrophages and introduced the use of in vitro techniques to study the maturation of human B-lymphocytes into immunoglobulin-synthesizing cells; he discovered that certain hypogammaglobulinemias and selective IgA deficiencies were caused by excessive activated suppressor T-cells; and he provided major new insights into the regulatory network of cells that controls the delicate balance of cell interactions in immune homeostasis.

Together with Stanley Korsmeyer and Philip Leder, he introduced molecular genetic analysis to the study of immunoglobulin and T-cell receptor gene rearrangements in order to broaden the scientific basis for diagnosis and monitoring of the therapy of lymphoid neoplasia. His most recent studies have focused on the critical role played by the receptor for interleukin 2 (IL-2) in the growth and differentiation of normal and neoplastic T-cells. The understanding of the IL-2/IL-2 receptor system provides new perspectives for the treatment of certain neoplasms and autoimmune disorders and for the prevention of allograft rejection.

Dr. Waldmann received the A.B. with honors from the University of Chicago and the M.D. from Harvard in 1955. He joined the National Institutes of Health as a medical staff fellow in 1956 and since 1971 has been Chief of the Metabolism Branch of the National Cancer Institute. He is on the editorial boards of 10 journals and has served on many advisory boards. He was designated as one of 50 most cited authors by Science Citation Index; he has published as author or coauthor over 500 publications and patents; and he has received a wealth of honors and awards, including membership in the National Academy of Sciences in 1985 and the American Academy of Sciences in 1989 and a host of honorary visiting professorships and lectureships. He is also an accomplished amateur photographer.

We are greatly indebted to Dr. Waldmann for the photos and career information.

Sidney Weinhouse