Oxidation of Methylhydrazines to Mutagenic Methylating Derivatives and Inducers of the Adaptive Response of *Escherichia coli* to Alkylation Damage

Barbara Sedgwick

Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Potters Bar, Hertfordshire, EN6 3LD, England

ABSTRACT

The methylhydrazines, monomethylhydrazine, 1,1-dimethylhydrazine, and 1,2-dimethylhydrazine, are known carcinogens but only weak mutagens in the *Ames* test. Chemical oxidation of these compounds by potassium ferricyanide greatly enhanced their mutagenicity to an *Escherichia coli* ada mutant and converted them into inducers of the adaptive response of *E. coli* to alkylation damage. Enzymatic oxidation of monomethylhydrazine by horseradish peroxidase-H$_2$O$_2$ also yielded products which induced the adaptive response. Thus, methylhydrazines can be oxidized to active DNA-methylating derivatives which generate methylating agents such as N-methyl-N'-nitro-N-nitosoguanidine and N-methyl-N-nitrosourea. Induction of the response results in the increased expression of four genes, namely, *ada*, *alkA*, *alkB*, or *aidB*. The *Ada* protein, O$_6$-methylguanine-DNA methyltransferase, demethylates the mispairing bases O$_6$-methylguanine and O$_6$-methylthymine in DNA and, consequently, protects against the mutagenicity of alkylation agents (reviewed in Refs. 18 and 19). The *Ada* protein also regulates the response. It transfers the methyl group from an S'-stereoisomer of a methylphosphotriester in DNA to one of its own cysteine residues and in so doing is converted into a strong transcriptional activator of the inducible genes. Thus, the generation of methylphosphotriesters in DNA is the inducing signal for the adaptive response (20). Direct protein methylation has also been demonstrated as a mechanism of *Ada* activation in vitro (21). However, the target size in the basal level of cellular *Ada* protein by low levels of alkylating agents will therefore occur most efficiently by the rapid repair of phosphotriesters in DNA. In a recent review (24), we described preliminary experiments indicating that the chemical oxidation products of one methylhydrazine (MMH) induce the response, which implies that these products methylate the phosphate linkages in DNA. The ability to alkylate oxygens suggested that mutagenic O$_6$-methylguanine may also be generated.

In this paper, we show that the *in vitro* oxidation products of three carcinogenic methylhydrazines, MMH, 1,1-DMH, and 1,2-DMH, are able to induce the adaptive response of *E. coli* and are mutagenic to *E. coli* ada mutants defective in the repair of O$_6$-methylguanine in DNA.

INTRODUCTION

Carcinogenic hydrazine derivatives occur naturally in edible mushrooms and tobacco and are used as pharmaceutical drugs, agricultural herbicides, high energy fuels, and chemical intermediates in industry (1-3). Methylhydrazines, including MMH, 1,1-DMH, and 1,2-DMH, are known to be carcinogenic in rodents. 1,2-DMH is the most potent of these three carcinogens and induces a high incidence of colon and rectal tumors (1, 2). Although methylhydrazines are well-known carcinogens, they are only weak mutants of *Salmonella typhimurium* in the *Ames* test. Preincubation with rat liver homogenates does not affect the mutagenic potency of 1,2-DMH or MMH and only slightly increases that of 1,1-DMH (4-6). The lack of correlation between the carcinogenic and mutagenic potencies of methylhydrazines may reflect the difficulty of reproducing in *vitro* the metabolic steps required for their activation in *vivo*.

DNA alkylation has been observed following treatment of rats with 1,2-DMH or MMH, and methylated bases including N6-methylguanine and the mutagenic mispairing derivative O$_6$-methylguanine have been detected (7-9). However, the mechanism of conversion of methylhydrazines to active alkylating species remains unclarified. Methyl-free radicals or methylidazonium ions formed during methylhydrazine oxidation may be the reactive intermediates which alkylate cellular constituents (reviewed in Refs. 3 and 10). The production of ethane by rats treated with 1,2-DMH suggested the release of methyl radicals in *vivo* (11). Such free radicals were also released *in vitro* from MMH, 1,1-DMH, 1,2-DMH, and methylformylhydrazine on activation by isolated hepatocytes or liver microsomes (12, 13) and on oxidation of 1,2-DMH or MMH by ferricyanide, oxyhemoglobin, or horseradish peroxidase-H$_2$O$_2$ (14-17). Oxidation of 1,2-DMH in the latter conditions resulted in nicking and alkylation of DNA (17), and in the case of MMH the methylated bases N6-methylguanine and C6-methylguanine were detected (15). This was the first finding of C6-methylguanine in DNA, and the mutagenicity of this methylated base remains uninvestigated.

The adaptive response of *Escherichia coli* to alkylation damage is specifically induced by methylating agents such as N-methyl-N'-nitro-N-nitosoguanidine and N-methyl-N-nitrosourea. Induction of the response results in the increased expression of four genes, namely, *ada*, *alkA*, *alkB*, or *aidB*. The *Ada* protein, O$_6$-methylguanine-DNA methyltransferase, demethylates the mispairing bases O$_6$-methylguanine and O$_6$-methylthymine in DNA and, consequently, protects against the mutagenicity of alkylating agents (reviewed in Refs. 18 and 19). The *Ada* protein also regulates the response. It transfers the methyl group from an S'-stereoisomer of a methylphosphotriester in DNA to one of its own cysteine residues and in so doing is converted into a strong transcriptional activator of the inducible genes. Thus, the generation of methylphosphotriesters in DNA is the inducing signal for the adaptive response (20). Direct protein methylation has also been demonstrated as a mechanism of *Ada* activation in vitro (21). However, the target size in the basal level of cellular *Ada* protein by low levels of alkylating agents will therefore occur most efficiently by the rapid repair of phosphotriesters in DNA. In a recent review (24), we described preliminary experiments indicating that the chemical oxidation products of one methylhydrazine (MMH) induce the response, which implies that these products methylate the phosphate linkages in DNA. The ability to alkylate oxygens suggested that mutagenic O$_6$-methylguanine may also be generated.

In this paper, we show that the *in vitro* oxidation products of three carcinogenic methylhydrazines, MMH, 1,1-DMH, and 1,2-DMH, are able to induce the adaptive response of *E. coli* and are mutagenic to *E. coli* ada mutants defective in the repair of O$_6$-methylguanine in DNA.

MATERIALS AND METHODS

Chemicals. MMH, 1,1-DMH, 1,2-DMH dihydrochloride were purchased from the Aldrich Chemical Company. Horseradish peroxidase type VI was from Sigma, peroxidase-conjugated rabbit anti-mouse immunoglobulins was from DAKO Ltd., and the ECL Western blotting detection system was from Amersham International.

Bacterial Strains. *E. coli* B strains, F26 (his thy sulA) and BS23 (a *sada-alkB* mutant of F26) (25, 26), and *E. coli* K12 strains, AB1157 (F$^+$ thr$^{-1}$ leu$^{-6}$ proA2 his$^{-4}$ thi$^{-1}$ argE3 lacY1 galK2 araA14 xylA1 thi$^{-3}$ rpsL31 supE44) and BS24 (as AB1157 but ada$^{-5}$ naf$^{-5}$ rif$^{-5}$) (27), were laboratory stocks. *E. coli* B GWR109 (as BS23 but *ogt-1:* Kan$^\text{+)}$ (28) was obtained from L. Samson, HK117 (rha lac str polA12 alkB:$^\text{+)}$ Tn3$^\text{+)}$ (29) was obtained from H. Kataoka, and *E. coli* K12 BH20 (AB1157 but *fpg-1:* Kan$^\text{+)})$ (30) was obtained from S. Boiteux.

BS87 (as AB1157 but alkB:$^\text{+)}$ Tn3$^\text{+)})$ was constructed by transduction of AB1157 with a thermosensitive P1 cml cir100 lysate of HK117 (alkB:$^\text{+)}$ Tn3$^\text{+)})$. The transduction method was as described previously (27). Ampicillin-resistant transductants were selected and purified on L agar plates containing 40 µg/ml ampicillin at 42°C. The enhanced sensitivity

Received 1/30/92; accepted 4/24/92.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Abbreviations: MMH, monomethylhydrazine; 1,1-DMH, 1,1 dimethylhydrazine; 1,2-DMH, 1,2 dimethylhydrazine; K,Fe(CN)$_6$, potassium ferricyanide; ECL, enhanced chemiluminescence.
of alkB::Tn3 (Amp') transductants compared with the parent strain AB1157 was demonstrated by streaking 10 μl of cultures (A_{soo} 0.4) across a 0–0.1% gradient of methylmethane sulfonate in a final volume of 100 ml L agar in a 10-cm² Petri dish and incubating at 37°C.

Treatment of Cultures with Methylhydrazines. Liquid cultures were grown to A_{soo} 0.3 in M9 minimal medium (31), 0.2% casamino acids, and, when required, 20 μg/ml thymine. Potassium phosphate (0.1 M), pH 7.5, and diethylenetriamine pentaacetic acid (10 mM) were added, and 1-ml culture aliquots were exposed to methylhydrazines at various final concentrations.

Immunoblot of Induction of the Ada Protein. Culture aliquots of 1 ml were exposed to doses of methylhydrazines that resulted in little or no cell killing for 40 min at 37°C. Where indicated, these treatments were in the presence of 12.5 mM K₃Fe(CN)₆ or 2 mM H₂O₂ and varying amounts of horseradish peroxidase. The cells were harvested and lysed in 20 μl detergent buffer (22). Cellular proteins in 7 μl lysate were resolved by 15% polyacrylamide-sodium dodecyl sulfate gel electrophoresis and transferred by electrophoresis to a nitrocellulose filter. The filter was blocked with 5% dried milk for 1 h and exposed to two purified anti-Ada monoclonal antibodies as described previously (22) for 2 h at 20°C. The two antibodies recognize the two major domains of the Ada protein. The filter was washed with 1% Nonidet P-40 in phosphate-buffered saline and incubated with peroxidase-conjugated rabbit anti-mouse immunoglobulins diluted 1:7000 in 1% Nonidet P-40 and 1% fetal calf serum in phosphate-buffered saline. After washing in 1% Nonidet P-40, the filter was treated with the ECL solutions as directed by the manufacturers and exposed to Amersham Hyperfilm-ECL for 30 s to several minutes at 20°C.

RESULTS

The Ada protein of E. coli is induced as part of the adaptive response to alkylation damage. We previously described a sensitive immunoassay in which two anti-Ada monoclonal antibodies were used to monitor induction of this protein (22). The assay was modified, and a chemiluminescence system was used to detect the secondary antibody. The ability of three methylhydrazines, MMH, 1,1-DMH, and 1,2-DMH, to induce the Ada protein was examined using this assay. Concentrations of up to 1 mM MMH (24), 1,1-DMH, or 1,2-DMH failed to induce the Ada protein of E. coli B strain F26 (Fig. 1). However, in the presence of K₃Fe(CN)₆, low concentrations of all three methylhydrazines were activated as inducers (Fig. 1), suggesting that they were all converted by oxidation to active methylating derivatives. The lowest doses used which resulted in Ada induction in the presence of ferricyanide were 30 μM MMH, 30 μM 1,1-DMH, and 100 μM 1,2-DMH. Compared with N-methyl-N'-nitro-N-nitosoguanidine and N-methyl-N-nitrosourea which induce the Ada protein at nanomolar concentrations (22, 32), the oxidized methylhydrazines were weak inducers.

MMH induced the E. coli Ada protein after oxidation by horseradish peroxidase-H₂O₂ (Fig. 2). The induction exhibited a dose dependency on the enzyme concentration (Fig. 2, lanes 1–5) and occurred only when all three components, MMH, horseradish peroxidase, and H₂O₂, were added to the cells (Fig. 2, lanes 5–9). Thus, oxidation of this methylhydrazine to an active DNA-methylating species also occurred by an enzyme-catalyzed process. The horseradish peroxidase was a particulate suspension and was pelleted with the cells after MMH treatment. The chemiluminescence Western blotting detection system monitored peroxidase activity and detected both the peroxidase-conjugated secondary antibody and the chemiluminescence system to detect the peroxidase-conjugated secondary antibody. The exposure time of the autoradiographs was 5 min. The methylhydrazine treatment doses (mM) of MMH (A), 1,1-DMH (B), or 1,2-DMH (C) are indicated above each lane.

The three carcinogenic methylhydrazines are poor mutagens of S. typhimurium in the Ames test with or without added liver microsomes (4–6). S. typhimurium has only a weak adaptive response which does not confer any detectable cellular resistance to mutation induction by such agents (34, 35). S. typhimurium is therefore a very sensitive bacterium for monitoring the mutagenicity of active methylating agents. Furthermore, 2 mM MMH, 1,1-DMH, or 1,2-DMH were not mutagenic to E. coli B strain BS23 (Δada-alkB) which completely lacks an adaptive response (Fig. 3, Table 1). However, on oxidation by K₃Fe(CN)₆, the mutagenicity of all three agents was dramatically increased >500-fold (Fig. 3, Table 1). This mutagenicity was detected using the ada mutant, BS23 (E. coli B F26 but Δada-alkB) (Fig. 3, Table 1), and also, in the case of MMH, a
OXIDATION OF METHYLMYDRAZINES TO MUTAGENIC DERIVATIVES

Fig. 2. Induction of the E. coli Ada protein by MMH oxidized by horseradish peroxidase and H2O2. E. coli F26 was exposed to 1 mM MMH, 2 mM H2O2, and various amounts of horseradish peroxidase (HRP) (42 kDa) (lanes 1-5). Lane 1, no horseradish peroxidase; lane 2, 25 μM; lane 3, 50 μM; lane 4, 125 μM; lane 5, 250 μM. Control cultures (lanes 6-9) were exposed to no addition (lane 6), MMH only (lane 7), MMH and H2O2 (lane 8), and MMH and 250 μM horseradish peroxidase (lane 9). The induced 39-kDa Ada protein was monitored by Western blotting as described in Fig. 1. The exposure time of the autoradiograph was 1 min.

Fig. 3. Mutagenicity of MMH oxidized by K2Fe(CN)6. E. coli BS23 (thy his ada-alkB) in supplemented minimal medium was exposed to various doses of MMH with or without the addition of 12.5 mM K2Fe(CN)6 for 30 min at 37°C. Cultures were immediately diluted and plated to estimate cell survival and the number of His+ revertants. O, without K2Fe(CN)6; •, with K2Fe(CN)6.

Table 1 Mutagenicity of 1,1-DMH and 1,2-DMH oxidized by K2Fe(CN)6

<table>
<thead>
<tr>
<th>DMH</th>
<th>K2Fe(CN)6</th>
<th>His+ revertants/107 survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BS23 (ada+)</td>
<td>F26 (ada-)</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
<td>0.3</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>1.0</td>
</tr>
<tr>
<td>+ 1.1 DMH</td>
<td>−</td>
<td>0.4</td>
</tr>
<tr>
<td>+ 1.1 DMH</td>
<td>+</td>
<td>218.0</td>
</tr>
<tr>
<td>+ 1.2 DMH</td>
<td>−</td>
<td><0.3</td>
</tr>
<tr>
<td>+ 1.2 DMH</td>
<td>+</td>
<td>141.0</td>
</tr>
</tbody>
</table>

* Strains F26 and BS23 were exposed to 2 mM 1,1-DMH or 1,2-DMH with or without 12.5 mM K2Fe(CN)6 for 30 min at 37°C and immediately plated to measure the cell survival and number of His+ revertants.

second ada mutant BS24 (E. coli K12 AB1157 but ada-5) (Fig. 4B). The parental strains (F26 and AB1157, respectively) were approximately 20-fold less mutagenized by the oxidized methylhydrazines than the ada mutants (Fig. 4, A and B, Table 1). Thus, the mutagenic adduct produced by the oxidized methylhydrazines was apparently repaired by the Ada O6-methylguanine-DNA methyltransferase activity or possibly the product of one of the four genes regulated by Ada (18). E. coli has two O6-methylguanine-DNA methyltransferase activities, the inducible Ada protein and also the constitutively synthesized Ogt protein. GWR109 (F26 but ogt Δada-alkB) lacks both these activities and was approximately 2-fold more sensitive than the ada mutant BS23 to mutation induction by the lower MMH doses of 0.5 and 1 mM (Fig. 4A). The 30 molecules of Ogt protein/cell (36) are consumed in the repair reaction and, therefore, conveyed measurable protection only at low levels of mutagenic damage. These observations imply that the Ada and Ogt O6-methylguanine-DNA methyltransferase activities are important in defending cells against the mutagenic products of oxidized methylhydrazines.

C*-Methylguanine of unknown mutagenicity was found in DNA treated with oxidized MMH (15). The fpg or mutM gene product is a DNA glycosylase which excises mutagenic C*-hydroxypurines and also imidazole ring-opened purines from DNA damaged by ionizing radiation or photosensitization (37-39). Thus, the fpg enzyme excises a range of imidazole ring-modified purines, and the possibility that it might excise C*-methylguanine from DNA was considered. The fpg mutant BH20, however, was not sensitive to the mutagenicity of oxidized MMH (Fig. 4B). Thus, C*-methylguanine is either not excised by the fpg gene product or it is not mutagenic. The inducible AlkB protein has an unknown function in DNA repair (40). An alkB mutant BS87 was also insensitive to the mutagenicity of oxidized MMH (Fig. 4B). Thus, the AlkB protein also was not involved in the repair of mutagenic adducts produced by oxidized MMH.

DISCUSSION

The methylhydrazines, MMH, 1,1-DMH, and 1,2-DMH, are nonmutagens or weak mutagens in the Ames test (4-6). The mechanism of activation of these compounds to mutagenic derivatives therefore required identification. In this paper, we have shown that chemical oxidation of these three methylhydrazines greatly enhanced their mutagenicity to E. coli ada mutants. Conditions have therefore been identified in which mutagenicity of methylhydrazines can be readily detected.

The oxidized methylhydrazines induced the Ada protein of E. coli. Thus, methylhydrazine oxidation must generate an active derivative which methylates DNA to give rise to the inducing signal of the adaptive response, methylphosphotriesters (20). The ability to alkylate DNA-oxygens suggests that
Oxidation of Methylhydrazines to Mutagenic Derivatives

The mutagenic bases O6-methylguanine and O4-methylthymine may also be generated. The Ada O6-methylguanine-DNA methyltransferase repairs both of these mutagenic bases. Methylation of O6-guanine and O4-thymine would therefore explain the sensitivity of ada mutants to mutation induction by oxidized methylhydrazines.

O6-Methylguanine and N7-methylguanine were found in the DNA of rats treated with 1,2-DMH or MMH (7–9). Oxidation of the methylhydrazines in vivo may account for their DNA-methylating ability and their effectiveness as mutagens and carcinogens. In support of this suggestion, enzymatic oxidation of MMH by horseradish peroxidase-H2O2 yielded products which induced the adaptive response indicating the alkylation of DNA-oxygens.

1,2-DMH is a more potent carcinogen than 1,1-DMH and MMH (2), but on oxidation 1,2-DMH was least mutagenic at the dose tested (Table 1, Fig. 3) and the least effective in inducing the adaptive response by approximately 3-fold (Fig. 1). The lack of correlation of the relative carcinogenic and mutagenic potencies may be related to different susceptibilities of the methylhydrazines to in vivo mechanisms of oxidation or, alternatively, to further means of activation of 1,2-DMH to carcinogenic derivatives.

Aerial oxidation has also been found to increase the mutagenicity of 1,1-DMH in the absence of liver microsomes (41). The presence of nitrosamines in this oxidized 1,1-DMH is unlikely to account for its mutagenicity since nitrosamines require metabolic activation by liver microsomes or hydroxylation to release the mutagenic methylidazionon ion (42, 43).

The conditions used in these experiments presented in this paper for methylhydrazine oxidation were similar to those of Augusto et al. (15) who detected the release of methyl radicals and the production of N7-methylguanine and C8-methylguanine in DNA. Methyl radicals released by homolysis of tert-buty1 peracetate-methylated free guanosine and adenosine at the C8 position but no N- or O-methylated products were detected (44). The ultimate alkylating derivatives released on oxidation of methylhydrazines may therefore be nucleophilic methyl radicals which methylate at C8-guanine and possibly electrophilic methylidazionion ions which alkylate at N7-guanine and O6-guanine (3, 45).

Acknowledgments

I thank J. Gannon for advice on the use of the chemiluminescence system and P. Karran, T. Lindahl, and P. Vaughan for critical reading of the manuscript.

References

Oxidation of Methylhydrazines to Mutagenic Methylating Derivatives and Inducers of the Adaptive Response of *Escherichia coli* to Alkylation Damage

Barbara Sedgwick

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/52/13/3693

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/52/13/3693. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.