Advances in Brief

Human Immunodeficiency Virus Type 1 tat Gene Up-regulates Interleukin 4 Receptors on a Human B-Lymphoblastoid Cell Line

Raj K. Puri,¹ and Bharat B. Aggarwal

Division of Cytokine Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892 [R. P. K.], and Cytokine Research Section, Department of Clinical Immunology and Biological Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 [B. B. A.]

Abstract

The human immunodeficiency virus type 1 (HIV-1) regulatory gene, tat III, is a powerful trans-activator of gene expression from the viral long terminal repeat and is essential for HIV replication. In addition, tat III protein has been shown to be immunosuppressive as indicated by the inhibition of antigen mediated T-cell proliferation. To further test whether tat III might play a direct role in the immunosuppressive effects of HIV-1 in addition to its role in virus replication, we examined the regulation of interleukin 4 (IL-4) receptors on a human B-lymphoblastoid cell line (Raji) transfected with HIV-1 tat gene (Raji-tat III). We used radioligand receptor binding analysis for cell surface expression and Northern blot analysis for the expression of human IL-4 receptor gene in Raji-tat III cells. Control Raji cells expressed 1383 ± 361 (SE; n = 3) IL-4 binding sites/cell with a dissociation constant (Kd) of 144 ± 27 pm (n = 3). However, Raji-tat III cells expressed about three times higher IL-4 receptors (4000 ± 633 IL-4 binding sites/cell; P < 0.03 compared to Raji cells) with a similar Kd of 273 ± 90 pm (n = 3; P > 0.05 compared to Raji cells). Whereas both Raji and Raji-tat III cells exhibited a single mRNA species (approximately 4 kilobases) of IL-4 receptors by Northern blot analysis, the mRNA level was about 3-fold higher in Raji-tat III cells compared to Raji cells. Cycloheximide inhibited the expression of IL-4 receptors by 50% in about 2 h in both cell types indicating both the half-life of IL-4 receptors and the requirement for protein synthesis for the tat III up-regulation of IL-4 receptors. Since IL-4 under certain circumstances has been shown to be immunosuppressant, our observation that the HIV-1 tat gene up-regulates IL-4 receptors suggests the possibility that the immunosuppressive effects of HIV-1 are mediated at least in part through IL-4 receptors.

Introduction

HIV-1 has been shown to be a causative agent of AIDS in humans (1, 2). AIDS is characterized by generalized immunosuppression including a decrease in number and function of T-cells and significant abnormalities of natural killer and B-cells as well as monocytes and macrophages (for a review see Ref. 3). HIV-1 codes for several structural and regulatory genes responsible for viral infectivity and replication (for a review see Ref. 4). Among the regulatory genes, tat and rev have been shown to be necessary for virus replication in vitro (5). HIV-1 tat III gene encodes for an 86 amino acid protein which is a strong trans-activator of gene expression from the viral long terminal repeat (6).

Cytokines have been shown to regulate replication and expression of HIV-1 in infected cells. IL-1, TNF-α, TNF-β, IL-6, and granulocyte-macrophage colony stimulating factor have all been shown to induce the expression of HIV-1 in infected T-cells and promonocytic cell lines (7–9). Recently, Sastry et al. (10) have demonstrated the induction of TNF-β by the transfection of Raji cells by HIV-1 tat III gene suggesting that the induction of virus replication by tat gene is probably mediated through the induced expression of TNF-β.

Since a hallmark of HIV infection is marked immunosuppression, it is possible that cytokines such as IL-4 play an important role in this process. IL-4, predominantly produced by Th2 lymphocytes and mast cells, has been shown to have diverse biological activities in many cell types including B-cells, T-cells, mast cells, monocytes, and other cells (for a review see Ref. 11). Besides its immunostimulatory functions, IL-4 can also have immunosuppressive effects on many cell types of the immune system. For example, IL-4 can inhibit synthesis of IL-2, IL-2 receptor expression, and IL-2/CD3 dependent proliferation of human T-cells (12), IL-2 induced proliferation and antigen specific immunoglobulin secretion in B-cells (13, 14), IL-2 induced activation of NK cells (15), the cytotoxic T-lymphocyte response to antigen (16), and the production of IFN-γ in human mixed lymphocyte culture (17). IL-4 can also inhibit the production of IL-1, IL-6, and TNF-α by human monocytes or macrophages (18).

The biological effects of IL-4 are mediated through specific cell surface receptors which have been identified on a wide variety of primary cells and established cell lines of both murine and human origin (11, 19). The role of IL-4 in the replication and propagation of HIV-1 or the status of production of IL-4 by the HIV-1 infected CD4 cells is not clear. In the present study, we have investigated the effect of HIV-1 tat gene on the expression of IL-4 receptors in a human B-lymphoblastoid cell line. Our data indicate that HIV tat gene constitutively expressed in a Raji cell line (20) up-regulated the expression of IL-4 receptors at both the protein and gene levels. Furthermore, we found that protein synthesis is required for this up-regulation.

Materials and Methods

Materials. The Raji cell line transfected with the HIV-1 tat gene (Raji-tat III) was the kind gift of Dr. Joseph Sodorski (Dana-Farber Cancer Institute, Boston, MA). The control Raji cell line was obtained from the American Type Culture Collection. Previously Sastry et al. (10) and Rosen et al. (20) have shown that Raji-tat III cells express a functional HIV-1 tat gene. Raji and Raji-tat III cells were cultured in complete media [composed of RPMI 1640 supplemented with 3 mm glutamine, 50 µg/ml gentamicin, and 10% heat inactivated fetal calf serum (Biofluids, Inc., Rockville, MD)]. Recombinant human IL-4 (specific activity, 10⁷ units/mg protein) and the cDNA probe for human IL-4R (24) were the generous gifts of Dr. Steven Gillis and Dr. Patricia Beckman of Immunix Corporation, Seattle, WA.

Radioreceptor Binding Assay. Recombinant human IL-4 was enzy-
matically labeled with 125I (Amersham, Arlington Heights, IL) by the Enzymobead method according to the manufacturer's instructions (Bio-Rad, Richmond, CA). The concentration of 125I-IL-4 was estimated by the amount of unlabeled IL-4 required to inhibit 50% of the binding to Ramos.G6.C10 or MLA 144 cells, a human IL-4R$^+$ B-cell or gibbon lymphoma cell line. The specific activity of the preparation ranged from 1.4 to 4.7 x 10^{10} cpm/mg protein.

For IL-4R assays, equilibrium binding studies were performed by the method previously described by Puri et al. (19, 21). Briefly, 2.5–5 x 106 cells in 126 µ binding buffer (RPMI 1640 containing 0.2% human serum albumin) were incubated with various concentrations of 125I-IL-4 at 4°C in polystyrene tubes. For each concentration of 125I-IL-4, nonspecific binding was determined in a parallel tube by including 100–200 molar excess of unlabeled IL-4. Affinity and number of IL-4 molecules bound/cell were calculated by Scatchard analysis (22) of the equilibrium binding data.

Northern Blot Analysis. Raji-tat III and Raji cells were harvested and after several washes, total RNA was extracted with RNAzol (TM Cinna-Scientific, Inc., Friendswood, TX) according to the manufacturer's instructions. Ten µg total RNA were electrophoresed on a 1% agarose gel containing formaldehyde and transferred to a nylon membrane (S and S Nytran; Schleicher and Schuell, Inc., Keene, NH) by capillary action. The nucleic acid was bound to the membrane by UV cross-linking (Stratagene) and allowed to hybridize overnight with a 32P-labeled human IL-4R complementary DNA or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) probe to assess the amount of RNA applied in each lane. Arrows, indicate positions of rRNA.

Results and Discussion

We examined the expression of IL-4 receptors on Raji-tat III and Raji cells by radioligand binding analysis. The number of IL-4 molecules bound/cell and the affinity of the receptor for IL-4 were determined. The equilibrium binding data for a typical experiment is shown in Fig. 1A. The data are represented as specific binding: nonspecific binding is 5–20% of the total radioactivity bound to the cell. Specific binding of IL-4 increased with concentrations of 125I-IL-4 up to 400–500 pM at which point saturation of binding occurred in both Raji-tat III and Raji cells. Raji-tat III cells specifically bound 3 to 5 times higher 125I-IL-4 molecules compared to Raji cells. Scatchard plot analysis of these data (Fig. 1B) was consistent with a single class of high affinity IL-4 receptors with a K_d of 144 ± 27 (SE) pM (n = 3) in Raji cells and 273 ± 90 pM (n = 3) in Raji-tat III cells. The apparent difference in K_d between Raji-tat III and Raji cells was statistically insignificant ($P > 0.05$). The number of IL-4 molecules bound/cell in control cells ranged from 950 to 2100 (1383 ± 361; n = 3). Similar numbers of IL-4 molecules bound/cell on Raji cells have also been previously reported (23). However, in Raji-tat III cells IL-4 molecules bound/cell ranged from 3050 to 5200 (4000 ± 633; n = 3). This difference in IL-4 receptor numbers between Raji-tat III and control cells was
of IL-4 receptors on Raji cells. Cycloheximide (10 \(\mu \)g/ml) was added to control and tat III transfected Raji cells and then cells cultured for various times at 37°C. As depicted in Fig. 3A, cycloheximide inhibited the expression of IL-4 receptors in a time dependent manner in both cell types. After about 2 h of incubation with cycloheximide there was a 74% decrease in IL-4 receptors/cell in Raji-tat III cells and thus receptor numbers became equivalent to nontransfected Raji cells. These data indicate that protein synthesis is required for HIV-1 tat up-regulation of IL-4 receptors. Cycloheximide also decreased IL-4 receptors on Raji cells in about 2 h to a 50% level compared to untreated cells. These data indicate that the half-life of IL-4 receptors on both control and tat-transfected Raji cells is about 2 h (Fig. 3B).

Thus, we demonstrate that HIV-1 tat gene up-regulates the expression of receptors for IL-4, an immunomodulatory and growth regulatory lymphokine. To our knowledge, this is the first report showing that HIV-1 tat can up-regulate the expression of IL-4 receptors in any cell type. Because B-cells are a primary target for IL-4, we used a human B-lymphoblastoid cell line transfected with HIV-1 tat gene for our study. Whether tat also up-regulates IL-4 receptors in T-cells, in which HIV-1 undergoes replication or monocytes which serve as a reservoir for HIV-1, is not clear.

The mechanism of action of tat III is not clearly understood. HIV-1 tat gene product can easily be taken up by other cells (25) and localized in the nucleus (26), thus suggesting its biological significance. The addition of exogenous tat III protein can inhibit the antigen mediated T-cell proliferative response (27). Transfer of tat III gene into mouse germ-line cells results in lesions that appear to be similar to human AIDS associated Kaposi’s sarcoma (28) and liver cancer (29). Furthermore, tat III protein can function as a growth factor for Kaposi’s sarcoma cells in vitro (30).

Since tat protein and IL-4 can inhibit antigen mediated T-cell proliferation (27) and cytotoxic T-lymphocyte development (16), respectively, it is possible that the inhibitory effects of tat are mediated through IL-4 receptors. IL-4 can also inhibit IL-2 induced proliferation of human B-cells (13), antigen specific immunoglobulin secretion (14), and proliferation of natural killer/lymphokine activated killer cells (15). The effects of HIV-tat III gene on these functions have not been evaluated, but it is plausible that tat protein can also inhibit these functions. Recently, IL-4 has also been shown to enhance HIV-1 replication and lead to multinucleated giant cell formation in HIV-1 infected monocyte derived macrophages (31). Since tat is essential for the replication of virus, it is plausible that tat induced replication of HIV-1 is mediated through enhancement of the IL-4 response by the up-regulation of IL-4 receptors. Furthermore, since IL-4 under certain conditions has been shown to be immunosuppressive, it is possible that HIV-1 tat gene mediated immunosuppression is also mediated through regulation of IL-4 receptors.

Acknowledgments

We are thankful to Pamela Leland for excellent technical assistance and Dr. Nicholas Obiri and Dr. Gerald Feldman for reading the manuscript.

References

1. Barre-Sinoussi, F., Chermann, J. C., Rey, F., Nugeyre, M. T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Vezinet-Brun, F., Rouzioux, C.,

Downloaded from cancerres.aacrjournals.org on October 27, 2017. © 1992 American Association for Cancer Research.
Human Immunodeficiency Virus Type 1 tat Gene Up-regulates Interleukin 4 Receptors on a Human B-Lymphoblastoid Cell Line

Raj K. Puri and Bharat B. Aggarwal

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/52/13/3787

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.