Loss of Expression of the DCC Gene during Progression of Colorectal Carcinomas in Familial Adenomatous Polyposis and Non-Familial Adenomatous Polyposis Patients

Rei Kikuchi-Yanoshita, Motoko Konishi, Hiroyuki Fukunari, Kiyoko Tanaka, and Michiko Miyaki

Abstract
We have previously observed that the frequency of loss of heterozygosity (LOH) on chromosome 18q was low in adenomas and intramucosal carcinomas, whereas invasive carcinomas exhibited a high frequency in familial adenomatous polyposis patients (M. Miyaki et al., Cancer Res., 50: 7166–7173, 1990). In the present study, LOH at the DCC locus on chromosome 18q and the expression of DCC gene into mRNA were analyzed in colorectal tumors with distinct histopathological types. The carcinomas that showed 18q LOH also lost the DCC locus. The expression of DCC gene into mRNA was examined at the level of 233-base pair fragments of nucleotide 986–1218 in DCC complementary DNA. In a moderate-to-severe adenoma, 5 carcinoma-in-adenomas, and 4 intramucosal carcinomas, the level of expression was as high as in normal colorectal mucosa, whereas it was greatly reduced or not detectable in most (13 of 16) invasive carcinomas. Among these invasive carcinomas, 7 of 11 showed 18q LOH, but 4 showed no LOH. These results suggest that the DCC gene is included in the allelic deletion on chromosome 18q, and that the progression of colorectal carcinoma from early stage to advanced stage accompanies the inactivation of the DCC gene through LOH and other mechanisms.

Materials and Methods
Tumor Specimens. In the present study, 23 tumors from 14 FAP patients and 4 tumors from 4 non-FAP patients were analyzed. A part of each specimen was fixed with formalin for diagnosis by histopathological staining. The remaining part was used for analyses of DNA and poly(A) RNA.

Histopathological diagnosis was performed as previously described (1), according to the General Rules of the Japanese Research Society for Cancer of Colon and Rectum (9). The tumors included “adenoma with moderate dysplasia,” “carcinoma-in-adenoma,” “intramucosal carcinoma,” and “invasive carcinoma.”

Analysis of LOH. Genomic DNA was extracted from each tumor and from normal colorectal mucosa corresponding to it, and LOH on chromosome 18q was analyzed as previously described (1). The following enzymes and probes were used in the present study: PstI and Os4 (10); MspI and p15-65 (8); EcoRI and 1.65 DCC-cDNA (8).

Analysis of Poly(A) RNA. Poly(A) RNA was prepared from each frozen tissue using guanidinium thiocyanate and oligodeoxynucleotide cellulose. The expression of DCC gene into mRNA was analyzed as described by Fearon et al. (8). First strand cDNA was synthesized from poly(A) RNA by using the antisense primer: 5′-ATGCCAATTTCACGCTCATTTTCAGCCACAACA-3′. The 233-base pair fragment of DCC cDNA (nucleotide 986–1218) was then amplified by polymerase chain reaction by using the sense primer, 5′-ATGCCAATTTCCTCGCCCATATGTTTTTAAATCA-3′ and the antisense primer. The 233-base pair fragment was separated in agarose gel, transferred to a nitrocellulose membrane, and hybridized with 32P-labeled 57 nucleotide oligomer coding 1141–1197 in DCC cDNA, as described previously (11).

Results
We have previously detected LOH at high frequency in invasive colorectal carcinomas from FAP patients (63%) using Os4 (18q21.3-qter) (1). In the present investigation, we analyzed LOH at DCC locus in invasive carcinoma that showed LOH at the Os4 locus (Fig. 1). For example, hybridization of Os4 to PstI-fragment of DNA from PLK89N detected 7.5 kilobases and 4.8-kilobase bands, and the former was lost in the carcinoma in PLK89Ca. Hybridization of p15-65 to MspI-fragment of DNA from the same patient detected 7.8 kilobases and 10.5-kilobase bands, the latter of which was deleted in carcinoma PLK89Ca. The combination of EcoRI and 1.65 DCC cDNA gave 20 kilobases and 16-kilobase bands, which were confirmed to be polymorphic. In PLK89Ca, the 16-kilobase band was kept, while the 20-kilobase band was lost on this patient. These results indicate that loss at Os4 corresponds to those at p15-65 locus and the expression of DCC gene into mRNA in colorectal tumors of distinct histopathological stages. We confirmed that the DCC gene was included in the deleted region and that its expression into mRNA was much reduced in invasive carcinoma.
LOH OF DCC GENE IN FAP PATIENTS

Fig. 1. LOH on chromosome 18q in normal colorectal mucosa and carcinoma from patient PLK89. N, normal tissue; Ca, carcinoma.

and 1.65 DCC-cDNA. There were many other carcinomas that showed similar LOH patterns. Therefore, it is suggested that the DCC gene is the target of LOH on chromosome 18q in colorectal carcinomas from FAP and non-FAP patients.

The DCC gene has been demonstrated to be inactivated in sporadic colorectal carcinomas by experiments showing loss of expression of this gene into mRNA (8). To clarify whether the inactivation of DCC gene occurs in the early or late stage of carcinogenesis in FAP patients, we examined the expression of the DCC gene into mRNA in colorectal tumors with distinct histopathological types, including an adenoma with moderate dysplasia, intramucosal carcinomas, and invasive carcinomas. The expression of DCC mRNA was determined by intensity of the 233-base pair band of nucleotide 986-1218 in DCC-cDNA, which was hybridized with synthetic 57-mer oligonucleotide (encoding 1141-1197 in DCC cDNA). This hybridization also detected the 180-base pair band, which may be an alternatively spliced transcript. As shown in Fig. 2, DCC mRNA was detected in adenoma with moderate dysplasia, PLK121A1, at the same degree as in normal mucosa from FAP (PLK121N) and non-FAP (N muc). DCC mRNA was also detectable in carcinoma-in-adenomas (PLK121A1, -A2, -A3, and A6, and PLK122A1) and intramucosal carcinomas (PLK121A4, -A5, and PLK122A and -A3), although its level was not as high as in normal mucosa and moderate adenoma. The expression of DCC mRNA was absent in most invasive carcinomas, except PLK36Ca, PLK58Ca, and PLK60Ca. DCC mRNA in even these three carcinomas was considerably reduced when compared with that in normal mucosa.

Table 1 is a list of the individual tumors examined for 18q LOH and the expression of the DCC gene into mRNA in the present study. Moderate adenoma, almost all carcinoma-in-adenomas, and intramucosal carcinomas expressed DCC mRNA and retained both alleles of the DCC gene. A carcinoma-in-adenoma, PLK121A1, and an intramucosal carcinoma, PLK121A4, showed LOH on 18q; however, it still expressed DCC mRNA. On the contrary, there were many invasive carcinomas without expression of the DCC gene, 64% of which (7 of 11) also showed LOH on 18q, but 36% of which (4 of 11) did not exhibit 18q LOH for the probes including Os4, p15-65, and DCC cDNA.

Discussion

In most FAP cases, it appears that moderate colorectal adenoma develops into severe adenoma, converts into early-stage carcinoma, and advances to invasive carcinoma, with an accumulation of genetic changes in tumor suppressor genes. With respect to the LOH on 18q, the frequency was very low in moderate and severe adenomas and in intramucosal carcinomas, but it was high in invasive carcinomas (1). These data strongly suggested that inactivation of a tumor suppressor gene on chromosome 18q was associated with the progression of early-stage carcinoma into advanced-stage carcinoma.

Fig. 2. Expression of DCC gene in colorectal tumors. The 233-base pair fragment of DCC cDNA was synthesized from mRNA, amplified by polymerase chain reaction, and detected by 57 synthetic nucleotides encoding 1141-1197 in DCC cDNA. The name of samples are the same as those in Table 1. N muc, and N, normal colorectal mucosa; Am, adenoma with moderate dysplasia; A, carcinoma-in-adenoma or intramucosal carcinoma; Ca, invasive carcinoma; NSF, normal skin fibroblast.
Although the highest frequency of LOH on chromosome 18q was observed on the Os4 locus (18q21.3-qter), we could not define the specific region for the target of LOH, since no specimen exhibited partial deletion on chromosome 18q. Fearon et al. (8) isolated a candidate tumor suppressor gene on chromosome 18q that is altered in sporadic colorectal carcinoma, termed "DCC gene." Then, we examined the possibility that a target for this LOH is the DCC gene. We detected LOH on p15-65, which is located within an intron of the DCC gene, in colorectal carcinomas that showed LOH on the Os4 locus (Fig. 1). LOH was also observed when 1.65 DCC-cDNA was used as a probe. These data indicate that the DCC gene is included in the allelic deleted region on chromosome 18q.

We could also observe a correlation between the malignancy of carcinoma and the level of DCC mRNA. The amount of DCC mRNA was determined as that of 233 base pair (1141-1233) fragment of DCC cDNA. The loss with LOH; 12, without LOH; —¿. not informative.

The majority of the cases seem to progress through this mechanism, although there may be some exceptions such as the case in which the 18q LOH precedes the 17p LOH (12).

The mechanism of loss or reduction of expression of DCC gene into mRNA remains to be resolved. As seen in Table 1, among 13 invasive carcinomas without DCC expression, 7 showed LOH, but 4 retained both alleles. Among the other 3 (PLK36Ca, PLK58Ca, and PLK60Ca) expressing DCC mRNA at a very low level, 2 had 18q LOH and 1 had no LOH. There were two carcinomas having both DCC mRNA and LOH: a carcinoma-in-adenoma PLK121A1 and an intramucosal carcinoma PLK121A4 still expressed DCC mRNA at a high level despite showing LOH. Accordingly, LOH does not seem to be necessary for loss of expression of DCC mRNA. There seem to be other causes, such as alterations in sequences controlling transcriptional regulation, point mutations or insertions within the DCC gene, or alterations in other genes controlling DCC gene expression. It will be of interest to examine these possibilities in future studies.

Acknowledgments

We are grateful to Dr. Bert Vogelstein of the Johns Hopkins Oncology Center for provision of p15-65 and 1.65 DCC-cDNA, and to Dr. Morio Koike of the Department of Pathology, the Tokyo Metropolitan Komagome Hospital, for histopathological diagnosis of tumor specimens.

References

Loss of Expression of the DCC Gene during Progression of Colorectal Carcinomas in Familial Adenomatous Polyposis and Non-Familial Adenomatous Polyposis Patients

Rei Kikuchi-Yanoshita, Motoko Konishi, Hiroyuki Fukunari, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/52/13/3801

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.