Advances in Brief

Gadd45 and Gadd153 Messenger RNA Levels Are Increased during Hypoxia and after Exposure of Cells to Agents Which Elevate the Levels of the Glucose-regulated Proteins

Brendan D. Price2 and Stuart K. Calderwood

Stress Protein Group, Joint Center for Radiation Therapy, Dana-Farber Cancer Institute, Boston, Massachusetts 02115

Abstract

We have investigated overlapping activation pathways for two families of stress genes that are expressed in cells exposed to hypoxia. The growth arrest and DNA damage (gadd) genes are induced by DNA damage and irradiation, and their expression is associated with growth arrest. The glucose-regulated proteins (GRPs) are induced by chemical agents that disrupt protein trafficking in the endoplasmic reticulum such as tunicamycin and A23187 and by hypoxia. Here, we demonstrate that the treatment of NIH-3T3 cells with chemical inducers of GRPs results in increased levels of gadd45 and gadd153 mRNA as well as GRP78 mRNA. In addition, hypoxia was also able to increase gadd45, gadd153, and GRP78 mRNA. Therefore the GRP and gadd genes can be activated by similar stimuli (e.g., hypoxia and chemical inducers). However, the mechanisms leading to increased levels of GRP78 and gadd gene mRNA are different and may involve distinct protein kinases. Increased expression of GRPs after treatment with chemical inducers is sensitive to cycloheximide and the protein kinase inhibitors genistein, 2-amino-purine, and H7, whereas the increase in gadd gene mRNA could be blocked by the protein kinase inhibitors H7 and 2-amino-purine but not by genistein or cycloheximide. GRP78 induction occurs by a pathway that requires protein synthesis and is sensitive to genistein, H7, and 2-amino-purine, whereas gadd gene induction is independent of protein synthesis and is inhibited by H7 and 2-amino-purine only.

Introduction

The gadd genes are induced by growth arrest, by DNA damage, or by X-ray or UV irradiation (1–3). One member of the gadd gene family, gadd45, is strongly induced by low doses (2 Gy) of X-ray irradiation by a mechanism which does not involve activation of protein kinase C (4). One of the main effects of the radiation of cells is to induce growth arrest, with cells being blocked in G2 (6, 7). This block is thought to allow cells time to repair DNA damage before proceeding to cell division (6, 7). Cells which are forced to proceed past this block without allowing time for DNA repair (by treating the cells with caffeine) exhibit reduced cell survival and DNA fragmentation (7). In yeast, the rad9 gene is thought to be responsible for blocking cells in G2 after irradiation (6). The gadd genes may encode mammalian proteins with functions similar to that of the rad9 gene, although they have no significant sequence homology to the rad9 gene (3, 4). Gadd45 has 60% homology to MyD118, a gene induced in murine myeloblastic leukemia cells during terminal differentiation and growth arrest (5). Thus the induction of the gadd genes by radiation and/or DNA-damaging agents may be required to growth arrest the cells and allow time for DNA repair. We were interested in how variations in the environment of the cell might affect the expression of the gadd genes. Hypoxia has been shown, using tissue culture systems, to confer radioresistance on cells (8), and hypoxic cells have been detected in tumors (9). However, there has been little study on how environmental conditions such as hypoxia may affect gene expression and how this may affect the response of cells to irradiation. The best-studied gene family whose transcription is altered by hypoxia is the GRPs. GRPs are major protein constituents of the ER (10–13). GRP78 functions as a molecular chaperone in the ER, where it participates in the folding of nascent proteins and the formation of oligomeric proteins (14). When cells are deprived of glucose (12), become hypoxic (11), or are treated with stress compounds that interfere with ER function (e.g., tunicamycin, A23187, thapsigargin) (12, 13, 15), the transcription of the GRPs is greatly increased. These stress agents may all act by inhibiting the glycosylation of proteins in the ER, which results in the retention of proteins within the lumen of the ER (10–14). This accumulation of proteins may be the stimulus for enhanced GRP transcription. Here, we show that both hypoxia and chemical inducers of GRP expression can cause increased expression of the gadd genes. However, the induction of the gadd genes apparently occurs by a different pathway to the induction of GRPs, since the two gene families showed differential sensitivities to protein synthesis inhibitors (cycloheximide) and protein kinase inhibitors (genistein, 2-amino-purine, H7).

Materials and Methods

Cell Culture, Inhibitor Treatment, and Hypoxia. NIH-3T3 cells were grown to about 90% confluency in Dulbecco’s modified Eagle’s medium containing 10% bovine calf serum. Inhibitors (obtained from Sigma Chemical Co., St. Louis, MO) were added at time zero and remained in the medium throughout the experiment unless otherwise stated. Cells were exposed to hypoxia as follows. NIH-3T3 cells were overlaid with 10 ml of fresh Dulbecco’s modified Eagle’s medium/10% serum (glucose = 4.5 g/dm3), sealed in air-tight chambers, and maintained at 37°C throughout the subsequent manipulations. The 95% air/5% CO2 medium was removed by flushing the chambers with 95% nitrogen/5% CO2, after which the concentration of oxygen was calculated to be 67 ppm (16). During hypoxia, approximately 20% of the available glucose was used after 20 h, and the pH of the medium remained close to 7.4 throughout the experiment. Cell viability was monitored with trypan blue; essentially all cells (>96%) excluded the dye at the end of the treatment, except for hypoxic cells incubated in either H7 or 2-amino-purine, 30% of which stained at the end of the incubation. For this reason, the treatment of hypoxic cells with H7 or 2-amino-purine was not studied (see text).

Northern Blotting. After the treatment of cells with inducers, cells were washed twice in phosphate-buffered saline, and total cellular RNA was prepared using the guanidinium isothiocyanate method (17). RNA (15 μg) was loaded and separated on 1% agarose/2.2 M formaldehyde agarose gels. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by NIH Grants R2CA44940 and RO1 47407.
2 To whom reprint requests should be addressed, at Dana-Farber Cancer Institute, 44 Binney Street, Room JP205, Boston, MA 02115.
3 The abbreviations used are: gadd, growth arrest and DNA damage; GRP, glucose-regulated proteins; ER, endoplasmic reticulum.
GADD GENES ARE ACTIVATED BY HYPOXIA AND GRP INDUCERS

Gadd45 and gadd153 mRNAs were detected using fragments of the gene. Hybridization and washing (in 1 x standard saline citrate/0.5% sodium dodecyl sulfate; 1 x SSC is 0.15 M NaCl/0.015 M sodium citrate) were carried out as previously described (18).

Results and Discussion

A23187 and tunicamycin have been shown to induce GRP expression in a number of cell lines (11-13). We have recently shown that thapsigargin, an inhibitor of the ER Ca²⁺-ATPase (15), is also a strong inducer of the GRP genes and, since it is less toxic than A23187 (15), we have chosen to use it in this study. Fig. 1 shows the effect of a number of GRP inducers on the levels of gadd45 (Fig. 1, top), gadd153 (Fig. 1, middle), and GRP78 (Fig. 1, bottom) mRNA. Fig. 1 (Lanes 1-4) shows that cells incubated with A23187, tunicamycin, or thapsigargin all show strong increases in the level of gadd45, gadd153, and GRP78 mRNA. In cells exposed to hypoxia (Fig. 1, Lane 6), increased levels of gadd and GRP78 mRNA can also be seen compared to controls (Fig. 1, lane 5), although the levels of induction are less than with chemical inducers. Fig. 1 demonstrates that both hypoxia and chemical inducers can cause accumulation of gadd45, and gadd153, and GRP78 mRNA.

In Fig. 2, cells were stimulated with thapsigargin, and the RNA was extracted at the indicated times. Both gadd45 and gadd153 can be detected as early as 2 h after stimulation, with accumulation continuing for at least 8 h, peaking by 10 h. This time course exactly mirrors the induction of GRP78 after thapsigargin addition (15) and demonstrates that the elevated levels of gadd gene mRNA is not a transient response to thapsigargin but represents long-term (10 h) accumulation.

In Fig. 3, the signaling pathways involved in the activation of the gadd genes were studied. Cycloheximide was used to inhibit protein synthesis, and the general protein kinase inhibitors H7 (which can antagonize protein kinase C and other kinases), 2-aminopurine (which has broad specificity toward ser/thr kinases), and genistein (specific for tyr protein kinases) (18) were used to block phosphorylation. In a previous study, we demonstrated that the accumulation of GRP78 mRNA after thapsigargin treatment could be inhibited by both genistein and cycloheximide (18). The experiment in Fig. 3 was carried out...
The effect of protein kinase inhibitors and protein synthesis on the increases in gadd gene mRNA during hypoxia were also studied. Because 2-aminopurine and H7 caused significant cell death when added to hypoxic cells (approximately 30% of cells were stained with trypan blue after incubation under hypoxic conditions with these inhibitors; see “Materials and Methods”), we were unable to determine if these inhibitors could affect the induction of gadd gene mRNA by hypoxia (data not shown). In Fig. 3 (top right), hypoxic cells (Fig. 3, Lane H) show increased levels of gadd153 mRNA, and this accumulation of gadd153 mRNA was unaltered by either cycloheximide (Fig. 3, Lane H + CHX) or genistein (Fig. 3, Lane H + Gen). Hypoxia increases gadd45 mRNA (Fig. 3, bottom, Lane H), and the addition of genistein (Fig. 3, Lane H + Gen) did not alter this, in contrast to the slight inhibitory effects of genistein on gadd45 induction after thapsigargin treatment (Fig. 3, left). Treatment of hypoxic cells with cycloheximide enhanced the accumulation of gadd45 mRNA compared to hypoxia alone (Lane 3, bottom right). This suggests that there are some differences in the mechanism of induction after hypoxic exposure compared to treatment with thapsigargin.

Cycloheximide has been shown to cause the superinduction of a number of rapidly turned over mRNAs by stabilizing the message (19). To assess whether any change in mRNA stability occurred during hypoxia, the stability of the gadd45 and gadd153 mRNAs was determined. Cells were stimulated with thapsigargin and allowed to accumulate mRNA for 4 h before the addition of actinomycin D. The rate of decrease in mRNA levels was then determined over the next 16 h (Fig. 4) in either air/CO2 (Fig. 4, con) or N2/CO2 (Fig. 4, hypoxia) atmosphere. Both gadd genes had half-lives of approximately 60 min under aerobic conditions (Fig. 4, con). During hypoxia, the half-life of gadd153 mRNA was unaltered, while the half-life of gadd45 mRNA was increased slightly from 65 min to approximately 95 min (Fig. 4, hypoxia). Because the levels of gadd45 and gadd153 are almost undetectable in untreated NIH-3T3 cells, it was not possible to determine the stability of the mRNAs in unstimulated cells.

The data indicate that cells exposed to either hypoxia or GRP inducers express both the gadd genes and GRP78, indicating some overlap in their activation pathways. However, the function of these two gene families is quite different, with gadd genes involved in growth arrest and GRP genes in protein folding (1, 14). It is possible that stress induces two types of response. First, cells become growth arrested (due to gadd gene expression) to allow the second step, the production of stress proteins (e.g., GRPs) and damage repair to take place. Other gene products are likely to be involved.

The induction of these two gene families appears to occur by distinct mechanisms. This inference is based on the observation that the accumulation of GRP78 mRNA after thapsigargin treatment is sensitive to genistein, 2-aminopurine, H7, and cycloheximide (15), whereas accumulation of gadd gene mRNA was sensitive to 2-aminopurine and H7, but not cycloheximide or genistein (Fig. 3). Accumulation of GRP78 mRNA requires new protein synthesis (blocked by cycloheximide) (15), whereas increases in gadd gene mRNA do not. This suggests that GRP transcription may require the synthesis of new protein factors involved in regulating gene transcription, whereas gadd gene transcription results from the activation of preexisting factors. A further difference between these two gene families is detailed by their differential sensitivity to protein kinase inhibitors. Accumulation of GRP78 mRNA is sensitive to H7, 2-aminopurine, and H7, whereas increased gadd gene mRNA does not require the synthesis of new proteins but can occur by the activation of existing systems, whereas increased GRPs require new protein synthesis (15). Thus although both GRP and gadd gene mRNA are increased by thapsigargin, activation of these genes occurs by two separate pathways.

* B. Price, unpublished observation.
purine (specific for ser/thr kinases), and genistein (specific for tyrosine kinases), while gadd gene expression is sensitive to only H7 and 2-aminopurine. Genistein is a well-established inhibitor of tyrosine kinases (15, 18), and the differential sensitivity of GRPs and gadd genes to it may indicate that GRP expression involves a tyrosine phosphorylation event which is not required for gadd gene expression. It has previously been shown that irradiation of cells increases gadd45 mRNA levels and that this is sensitive to H7 (4), which agrees with the results shown here. As we have shown before, hypoxia may activate a pathway separate from those of chemical inducers, since the hypoxic induction of GRPs is not blocked by cycloheximide (15). During hypoxia, the half-life of gadd45 mRNA is slightly increased, but the half-life of gadd153 mRNA is unaffected. It is possible that some control over the levels of gadd genes mRNA is exerted at the level of mRNA stability (1–4), especially during hypoxia.

These results suggest that a range of stimuli, including hypoxia, GRP inducers, and irradiation, can activate diverse signaling systems within the cell, some of which converge on similar gene targets such as gadd genes or GRPs, and enhance their transcription. However, the route by which these signals are sent may differ, depending on the stimulus encountered, and may indicate that there are other genes involved which have yet to be identified.

We have shown that gadd gene mRNA can be increased by compounds that cause the induction of the GRPs in fibroblast cell lines and that the exposure of cells to hypoxia will also increase the gadd genes. This has a number of important consequences, since it means that cells exposed to hypoxia, whether in vitro or in vivo, can potentially express both GRPs and gadd genes. gadd genes are also induced in response to irradiation and DNA damage (1) and may have a role in mediating the G2 arrest of cells which occurs after irradiation (1–4). Their expression in hypoxic cells may make some contribution to the inherent radiosensitivity of hypoxic cells seen in vitro (8, 9). It is also of interest to note that these data show that some radioinduced genes (i.e., gadd genes) may also be activated by hypoxia. In conclusion, this study has outlined a number of steps in the induction of both the gadd genes and GRPs under environmental stress conditions and should allow further studies to help define the mechanisms of the activation of these genes.
Gadd45 and Gadd153 Messenger RNA Levels Are Increased during Hypoxia and after Exposure of Cells to Agents Which Elevate the Levels of the Glucose-regulated Proteins

Brendan D. Price and Stuart K. Calderwood

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/52/13/3814

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.