Abundant Expression of Immunoreactive Endothelin 1 in Mammary Phyllodes Tumor: Possible Paracrine Role of Endothelin 1 in the Growth of Stromal Cells in Phyllodes Tumor

Jun-ichi Yamashita, Michio Ogawa,1 Hiroshi Egami, Shuichi Matsuo, Hideo Kiyohara, Kazuo Inada, Shin-ichi Yamashita, and Soyoji Fujita

Department of Surgery II, Kumamoto University Medical School, Honjo 1-1-1, Kumamoto 860 [J. Y., M. O., H. E., S. M., H. K., K. I., S-i. Y.], and Kitazato Biochemical Laboratories, Kitazato 1-15-1, Sagamihara, Kanagawa 228 [S. F.], Japan

Abstract

Immunoreactive endothelin 1 (irET-1) concentrations were measured in extracts prepared from 4 phyllodes tumors and 14 fibroadenomas. irET-1 was detectable in all tissue extracts by specific radioimmunoassay, and the mean concentration of irET-1 was 18-fold and 27-fold higher in tissue extracts from phyllodes tumors than in those from intracanalicular fibroadenomas and pericanalicular fibroadenomas, respectively. Reverse-phase high-performance liquid chromatography coupled with radioimmunoassay in the extracts from phyllodes tumors revealed one major irET-1 component corresponding to human standard ET-1. Furthermore, immunocytochemical staining for ET-1 revealed that numerous ET-1-immunoreactive cells were seen in the epithelial cells but not in the stromal cells, suggesting that ET-1 is synthesized by the epithelial component of phyllodes tumors. A possible paracrine role of ET-1 in the growth of this rare tumor is characterized by its prominent stromal cellularity is discussed.

Introduction

ET-1 is a novel vasoconstrictive peptide originally isolated from the spent medium of cultured endothelial cells of porcine vessels (1). Recently, several investigators have demonstrated that ET-1 possessed a novel biologic activity which stimulates DNA synthesis in vascular smooth-muscle cells (2, 3), in rat mesangial cells (4), and in Swiss 3T3 fibroblasts (5, 6). Furthermore, ET-1 is produced by a wide variety of nonendothelial cultured cell types, including vascular smooth muscle cells (7), renal epithelial cells (8), endometrial glandular epithelial cells (9), and normal human breast epithelial cells (10) as well as several human tumor cell lines (11–13).

Mammary phyllodes tumor is a rare tumor representing only 2.5% of all fibroepithelial lesions of the breast (14). This tumor is characterized as a combined fibroepithelial tumor in which the mesenchymal or stromal component is much more hypercellular than fibroadenoma (15). Mammary phyllodes tumor tends to be large compared with any other type of breast tumor when patients come for treatment, because this tumor frequently grows rapidly. However, nothing is known about the mechanism for the rapid growth of this tumor.

Recently, Baley et al. (10) reported that specific cell-surface receptors for ET-1 were observed only in the stromal cells, but not in the epithelial cells of the breast. These observations prompted us to investigate the concentration of ET-1 in phyllodes tumor of the breast. We report here that tissue extracts from phyllodes tumors contained a considerably large amount of irET-1 compared to those from fibroadenomas and that this concentration is much higher than that from breast cancer tissues we previously reported (16).

Materials and Methods

Human Tumors. Eighteen fibroepithelial neoplasms (4 phyllodes tumors and 14 fibroadenomas) are included in this study. The diagnosis of phyllodes tumors was made if they had a characteristic leaflike and cystic gross appearance or if they contained both epithelium and fibrous stromal components as a part of the neoplasm together with a greater degree of stromal cellularity than fibroadenomas (17). These tumor tissues were stored at -80°C immediately after surgical removal until extraction. Each specimen was homogenized and extracted with 50 mM Tris-HCl buffer (pH 7.4) containing 0.25% Triton X-100 as described previously (18).

Human ET-1 RIA. irET-1 concentration was determined by specific RIA for ET-1 as described previously (16, 19). irET-1 concentration in each extract was expressed as pg/mg protein. Protein concentration was determined by the method of Lowry et al. (20) with bovine serum albumin as a standard.

Reverse-Phase HPLC. Reverse-phase HPLC (high-performance liquid chromatography) was performed in tissue extracts from four phyllodes tumors using a column (0.46 x 25 cm; Capcell Pak C18 SG 120) eluted with a linear gradient of acetonitrile from 10 to 60% in 0.09% trifluoroacetic acid for 60 min at a flow rate of 1.0 ml/min. After evaporation, each elute was subjected to ET-1 RIA.

Immunocytochemistry for ET-1. Immunocytochemical staining for ET-1 was carried out in four phyllodes tumor tissues using the avidin-biotin complex method (21). ABC kits (Vector Laboratories, Inc.) were used. Briefly, after dewaxing, tissue sections were washed with 1% normal serum for 30 min to reduce nonspecific background staining and then incubated with biotin complex method (21). ABC kits (Vector Laboratories, Inc.) were used. Briefly, after dewaxing, tissue sections were washed with 1% normal serum for 30 min to reduce nonspecific background staining and then incubated with rabbit polyclonal ET-1 antiserum (Pep-tide Institute, Inc., Osaka) at a dilution of 1:500 in humidified chambers overnight at 4°C. The control slides were treated with dilute rabbit serum. All the treated slides were exposed for 30 min to biotinylated goat anti-rabbit IgG (Vectorstain Elite Kit, Vector Laboratories, Breton, England) and avidin-biotin peroxidase complex for 30 min at room temperature. They were subsequently incubated with normal serum for 30 min to reduce nonspecific background staining and were then incubated with rabbit polyclonal ET-1 antiserum (Peptide Institute, Inc., Osaka) at a dilution of 1:500 in humidified chambers overnight at 4°C. The control slides were treated with dilute rabbit serum. All the treated slides were exposed for 30 min to biotinylated goat anti-rabbit IgG (Vectorstain Elite Kit, Vector Laboratories, Breton, England) and avidin-biotin peroxidase complex for 30 min at room temperature. They were washed in 0.01 M phosphate-buffered saline (pH 7.2) between incubation steps. Peroxidase activity was visualized with 0.01% 3,3′-diaminobenzidine tetrahydrochloride (Sigma, St. Louis, MO) in 0.05 mm Tris-HCl buffer (pH 7.6). The sections were counterstained with Mayer’s hematoxylin.

Statistical Analysis. The statistical significance of differences in irET-1 concentration was tested by means of the t test.

Results

Clinical Features. Table 1 shows the clinical and pathological findings of 18 female patients with fibroepithelial tumors of
ENDOTHELIN-1 IN PHYLLODES TUMOR

Table 1 Clinical and pathological findings in 18 patients studied

<table>
<thead>
<tr>
<th>Case</th>
<th>Diagnosis</th>
<th>Age of patient (yr)</th>
<th>Size of tumor (cm)</th>
<th>Duration of symptoms</th>
<th>Recurrence</th>
<th>irET-1 (pg/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phyllodes (benign)</td>
<td>42</td>
<td>13.0</td>
<td>2 yr 9 mo</td>
<td>No</td>
<td>10.85</td>
</tr>
<tr>
<td>2</td>
<td>Phyllodes (benign)</td>
<td>24</td>
<td>14.5</td>
<td>6 mo</td>
<td>Yes</td>
<td>24.46</td>
</tr>
<tr>
<td>3</td>
<td>Phyllodes (benign)</td>
<td>21</td>
<td>4.5</td>
<td>15 day</td>
<td>No</td>
<td>19.12</td>
</tr>
<tr>
<td>4</td>
<td>Phyllodes (benign)</td>
<td>36</td>
<td>9.0</td>
<td>3 mo</td>
<td>No</td>
<td>31.29</td>
</tr>
<tr>
<td>5</td>
<td>Fibroadenoma (intracanal)</td>
<td>17</td>
<td>3.0</td>
<td>3 yr</td>
<td>No</td>
<td>1.02</td>
</tr>
<tr>
<td>6</td>
<td>Fibroadenoma (intracanal)</td>
<td>26</td>
<td>2.5</td>
<td>20 days</td>
<td>No</td>
<td>0.31</td>
</tr>
<tr>
<td>7</td>
<td>Fibroadenoma (intracanal)</td>
<td>33</td>
<td>3.8</td>
<td>5 yr</td>
<td>No</td>
<td>0.81</td>
</tr>
<tr>
<td>8</td>
<td>Fibroadenoma (intracanal)</td>
<td>13</td>
<td>8.5</td>
<td>1 yr 2 mo</td>
<td>No</td>
<td>2.36</td>
</tr>
<tr>
<td>9</td>
<td>Fibroadenoma (intracanal)</td>
<td>19</td>
<td>4.3</td>
<td>5 mo</td>
<td>No</td>
<td>1.75</td>
</tr>
<tr>
<td>10</td>
<td>Fibroadenoma (pericanal)</td>
<td>22</td>
<td>2.2</td>
<td>21 days</td>
<td>No</td>
<td>0.77</td>
</tr>
<tr>
<td>11</td>
<td>Fibroadenoma (pericanal)</td>
<td>37</td>
<td>5.8</td>
<td>18 yr</td>
<td>No</td>
<td>1.04</td>
</tr>
<tr>
<td>12</td>
<td>Fibroadenoma (pericanal)</td>
<td>25</td>
<td>3.5</td>
<td>8 mo</td>
<td>No</td>
<td>0.26</td>
</tr>
<tr>
<td>13</td>
<td>Fibroadenoma (pericanal)</td>
<td>21</td>
<td>4.0</td>
<td>2 mo</td>
<td>No</td>
<td>1.61</td>
</tr>
<tr>
<td>14</td>
<td>Fibroadenoma (pericanal)</td>
<td>30</td>
<td>3.5</td>
<td>1 yr</td>
<td>No</td>
<td>0.84</td>
</tr>
<tr>
<td>15</td>
<td>Fibroadenoma (pericanal)</td>
<td>24</td>
<td>2.0</td>
<td>7 mo</td>
<td>No</td>
<td>0.62</td>
</tr>
<tr>
<td>16</td>
<td>Fibroadenoma (pericanal)</td>
<td>33</td>
<td>3.2</td>
<td>11 mo</td>
<td>No</td>
<td>1.06</td>
</tr>
<tr>
<td>17</td>
<td>Fibroadenoma (pericanal)</td>
<td>40</td>
<td>1.5</td>
<td>9 yr</td>
<td>No</td>
<td>0.33</td>
</tr>
<tr>
<td>18</td>
<td>Fibroadenoma (pericanal)</td>
<td>27</td>
<td>2.8</td>
<td>3 mo</td>
<td>No</td>
<td>0.68</td>
</tr>
</tbody>
</table>

*Intracanal, intracanalicular type; pericanal, pericanalicular type.

the breast. All phyllodes tumors were regarded as histologically benign according to the criteria proposed by Norris and Taylor (17). The 14 fibroadenomas comprised 7 intracanalicular types and 7 pericanalicular types.

Four phyllodes tumors occurred between 21 and 42 years of age at the time of diagnosis with an average age of 31 years, which was slightly older than the average age of 26 years for the 14 fibroadenomas. The median size of phyllodes tumors was 10.3 cm with a range of 4.5-14.5 cm in greatest diameter, much larger than that of fibroadenomas (3.6 cm). The clinical duration of symptoms, based on the histories obtained from the patients, varied from less than 1 month to 18 years. With respect to phyllodes tumor, tumors of Case 1 and Case 2 had enlarged rapidly after an initial period (2 years 5 months, 5 months, respectively) of slow growth, and tumors of Case 3 and Case 4 grew rapidly from first appearance until removal. In contrast, the growth of all fibroadenomas was uniformly slow. All tumors were excised. One (Case 2) of the four phyllodes tumors recurred locally. In this case, the recurrence presented 5 months after the initial operation and was successfully treated by reexcision.

irET-1 in Tumor Extracts. The reverse-phase HPLC profile of ET-1 in the tissue extracts from Case 1 phyllodes tumor is depicted in Fig. 1 and shows a major peak in the position of human standard ET-1. Similar results were obtained in the tissue extracts from the three other cases of phyllodes tumors. A serial dilution curve of tissue extracts from phyllodes tumors exhibited parallelism with that of standard ET-1 in the RIA (data not shown), indicating that these extracts contain irET-1.

As shown in Table 1 and Fig. 2, a more than 18-fold higher mean concentration of irET-1 was found in tissue extracts from phyllodes tumors (21.43 pg/mg protein, ranging from 10.85 to 31.29 pg/mg protein) than in those from intracanalicular fibroadenomas (1.15 pg/mg protein, ranging from 0.31 to 2.36 pg/mg protein; $P = 0.0001$). Similarly, a more than 27-fold higher irET-1 concentration was found in tissue extracts from phyllodes tumors than in those from pericanalicular fibroadenomas (0.77 pg/mg protein, ranging from 0.26 to 1.61 pg/mg protein; $P < 0.0001$). No significant difference was found in irET-1 concentration between two types of fibroadenomas.

Immunocytochemical Staining. As shown in Fig. 3, irET-1 was localized to epithelial cells in phyllodes tumor tissues, while...
no stromal cells showed positive immunostaining. The immuno-
reactivity is localized in the cytoplasm, showing a granular
appearance. The results were similar in the tissue from all four
patients studied. Control studies with nonimmune rabbit serum
gave negative results.

Discussion

In the present study, we demonstrated that irET-1 concen-
tration in the extracts from phyllodes tumors is significantly
higher than that from two types of fibroadenomas. This irET-1
concentration of phyllodes tumor tissues is significantly higher
($P = 0.001$) than that of breast cancer tissues (3.634 pg/mg
protein) previously reported (16). Furthermore, immunocy-
tochemical study revealed the presence and localization of
irET-1 in epithelial cells of phyllodes tumors.

ET-1 is a potent vasoconstrictor through its activity on vas-
cular smooth muscle cells. Like other vasoconstrictor, ET-1 has
been reported to stimulate the formation of inositol phosphates
and Ca$^{2+}$ mobilization in these cells (22, 23). Recently, several
investigators have reported that ET-1 shows other biological
effects in nonvascular systems (24–27) than vasoconstriction.
Specific receptors for ET-1 are distributed not only in the car-
diovascular system, but also in a wide variety of tissues (28),
suggesting its diverse physiological functions. However, Baley
et al. (10) reported that ET-1 receptors were not detectable in
breast epithelial cells and that breast stromal cells possessed
ET-1 receptors which are coupled to an inositol lipid-specific
phospholipase C, suggesting a possible paracrine role for this
peptide in the breast. Very recently, Schrey et al. (29) showed
that ET-1 alone caused a modest stimulation of DNA synthesis
in human breast fibroblasts and that ET-1 synergizes very
strongly with IGF-1 to stimulate DNA synthesis (29). Human
fibroblasts produce IGF-1 (30), and indeed, human breast stro-
mal cells express IGF-1 mRNA (31). ET-1 and IGF-1 may thus
function as a growth factor on breast stromal cells. Our present
results suggest that ET-1 may play an important role in stim-
ulating the growth of stromal cells of phyllodes tumor in a
paracrine fashion, causing the rapid growth of this tumor.

References

1. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M.,
Mitsu, Y., Yazaki, Y., Goto, K., and Masaki, T. A novel potent vasocon-
strictor peptide produced by vascular endothelial cells. Nature (Lond.), 332:
2. Komuro, I., Kurihara, H., Sugiyma, T., Takaku, F., and Yazaki, Y. Endo-
thelin stimulates c-fos and c-myc expression and proliferation of vascular
4. Simonon, M. S., Wann, S., Mene, P., Dugyak, G. R., Kester, M., Nakazato,
Y., Sedor, J. R., and Dunn, M. J. Endothelin stimulates phospholipase C,
Na$^{+}$/H$^{+}$ exchange, c-fos expression, and mitogenesis in rat mesangial cells.
5. Kusuhara, M., Yagamuchi, K., Ohnishi, A., Abe, K., Kimura, S., Ono, H.,
Hori, S., and Nakam, Y. Endothelin potentiates growth factor-stimulated
6. Deitch, W. D., and Littlewood, C. J. Endothelin stimulates DNA synthesis in
Buhler, F. R. Inducible endothelin mRNA expression and peptide secretion
8. Ohta, K., Hirata, Y., Imai, T., Kanno, K., Emori, T., Shichiri, M., and
Marumo, F. Cytokine-induced release of endothelin-1 from porcine renal
9. Economos, K., MacDonald, P. C., and Casey, M. L. Endothelin-1 gene
expression and biosynthesis in human endometrium: potential modulator
 messenger RNA and receptors are differentially expressed in cultured human
11. Suzuki, N., Matsumoto, H., Kitada, C., Kimura, S., and Fujino, M. Produc-
tion of endothelin-1 and big endothelin-1 by tumor cells with epithelial-like
12. Kusuhara, M., Yagamuchi, K., Nagasaki, K., Hayashi, C., Suzuki, A., Hori,
S., Handa, S., Nakamura, Y., and Abe, K. Production of endothelin in human
13. Economos, K., MacDonald, P. C., and Casey, M. L. Endothelin-1 gene
expression and biosynthesis in human endometrial HEC-1A cancer cells.
14. Lester, J., and Stout, A. P. Cystosarcoma phyllodes. Cancer (Phila.), 7:
15. Haagensen, C. D. Cystosarcoma phyllodes. In: Diseases of the Breast, Ed. 3,

Abundant Expression of Immunoreactive Endothelin 1 in Mammary Phyllodes Tumor: Possible Paracrine Role of Endothelin 1 in the Growth of Stromal Cells in Phyllodes Tumor

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/52/14/4046

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.