Unifocal Origin of Advanced Human Epithelial Ovarian Cancers

Chi-Ho Mok, Sai-Wah Tsao, Robert C. Knapp, Paula M. Fishbaugh, and Ching C. Lau

Laboratory of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital [C-H. M., S-W. T., R. C. K., P. M. F., C. C. L.], and Division of Gynecologic Oncology, Dana-Farber Cancer Institute [S-W. T., R. C. K., C. C. L.], Harvard Medical School, Boston, Massachusetts 02115

Abstract

Ovarian cancers are often diagnosed at a late stage, after the cancer cells have spread to extraovarian sites. Failure to diagnose these tumors earlier may reflect the lack of symptoms and the need for a sensitive, reliable screening test. Alternatively, this can be explained by the hypothesis that some of the extraovarian tumor implants do not represent metastatic spread from the primary cancer but instead are multiple primary tumors developing simultaneously in the peritoneal epithelium.

If this is the case, some patients with advanced ovarian cancer may never have had a stage I disease, making early detection theoretically impossible. In this study, we examined the mutational pattern of the p53 gene in 9 patients with epithelial ovarian cancers using tissue collected from different sites within the same patient. In all 9 cases, the mutational pattern of the p53 gene was identical in cancer cells from different sites within the same patient. Strongly suggesting that these ovarian tumors were of unifocal origin and that cancer tissues collected from different sites are derived from a single origin.

Introduction

Of all gynecological cancers, epithelial cancer of the ovary ranks first as a cause of death in the United States. The overall 5-year survival rate of these types of ovarian cancers is about 30% (1). Failure to diagnose ovarian cancer at an early stage explains in part the poor prognosis of patients with this disease. Usually, the late diagnosis is attributed to the lack of a sensitive test for early detection and the fact that patients tend to be asymptomatic. However, an alternate hypothesis has been proposed that extraovarian tumor implants in the pelvic and abdominal cavities might actually be synchronous primary tumors developing independently in the peritoneal epithelium (2). This supposition would imply that the entire peritoneal epithelium lining the pelvic and abdominal cavities is susceptible to neoplastic changes. For example, in multiple focal extraovarian serous carcinoma, the peritoneal surfaces of the female genital organs are studded with tumors resembling ovarian serous carcinoma, while the ovarian parenchyma is either spared or only minimally involved (3, 4). Such a hypothesis would also explain the occurrence of peritoneal carcinomatosis, which are indistinguishable histopathologically from primary ovarian carcinoma, in some patients who have undergone bilateral prophylactic oophorectomy (5). If ovarian cancer can develop from multiple sites, some patients with advanced ovarian cancer may not have had a stage I disease, making early detection by screening theoretically impossible. A multifocal origin of ovarian cancer will raise a question about the effectiveness of prophylactic oophorectomy, which is sometimes recommended, in patients with familial history of cancer (5).

The purpose of this study is to determine whether ovarian cancer is multifocal or unifocal in origin by examining the mutational pattern of the p53 gene. According to the monoclonal theory of carcinogenesis, cells within a given tumor are derived from a single transformed cell, and genetic changes acquired by a cancer cell will be transmitted to all progeny. If the pattern of p53 mutation in cancer cells collected from multiple sites within the same patient is identical, it would provide strong evidence in support of a unifocal origin for the cancer.

Mutation of the p53 gene is common in human cancers (6). In most cases, the mutations are located at codons diversely distributed in the conserved region of the gene. This broad spectrum of mutation will be useful in determining the focal origin of human cancers. In ovarian cancer, the mutational rate of the p53 gene is about 30%, and no specific mutational “hotspot” has been found (7, 8).

Here, we report the use of the mutation of the p53 gene as a means to examine the focal origin of human ovarian cancer. The mutational pattern of the p53 gene in cancerous tissue collected from the left and right ovaries as well as from the omentum of the same patient was compared using the PCR-SSCP method. The sites of the mutation were then determined using a direct sequencing method.

Materials and Methods

Specimen Collection and DNA Extraction. Tumor tissues from the ovarian and omental sites as well as normal tissues were collected from 20 patients with informed consent. All specimens were confirmed to be invasive epithelial ovarian cancers by a gynecological pathologist, and tumors were graded and staged according to the International Federation of Gynecology and Obstetrics criteria. Control tissues consisted of samples of normal fallopian tube, uninvolved round ligament, or peritoneal blood. The presence of ovarian cancer cells in the surgical specimens was confirmed by histological examination. DNA from the tissues were extracted according to previously published procedures (9).

PCR Amplification and SSCP Analysis. Exons 4–8 of the p53 gene were amplified by PCR according to procedures described by Okamoto et al. (8) for exon 4 and Hsu et al. (10) for exons 5–8. The oligonucleotide primers were synthesized by Genosys Biotechnologies, Inc. (Woodlands, TX). The PCR-SSCP procedures are as follows. Left and right PCR primers flanking the exon of the p53 gene were radiolabeled with T4 polynucleotide kinase (Boehringer Mannheim, Indianapolis, IN). The reaction mix was then diluted into a final volume of 400 μl of primer-PCR mixture containing 40 μl of 10 × PCR buffer (0.1 M Tris-HCl-0.5 M KCl, pH 8.3), 20 μM MgCl2, 20 μl of 1.25 mm deoxynucleotide triphosphate mixture, and 2 μl (10 units) of Taq polymerase (Perkin-Elmer Cetus, Norwalk, CT). Amplification was carried out with 50 ng of genomic DNA using 40 cycles of PCR (1 min incubation at 60°C for annealing, 30 s at 72°C for polymerization, and 30 s at 94°C for denaturation). The PCR products were then mixed with 45 μl of

Received 6/30/92; accepted 7/28/92.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This study is supported in part by the William Graves Ovarian Cancer Fund, Boston, MA, and by a grant from Centocor, Inc., Malvern PA. Both C-H. M. and S-W. T. have made equal contributions to this work.

2 To whom requests for reprints should be addressed, Laboratory of Gynecologic Oncology, Seeley G. Mudd Building, Room 210, 250 Longwood Avenue, Boston, MA 02115.

3 The abbreviations used are: PCR, polymerase chain reaction; SSCP, single-strand conformation polymorphism.
buffer containing 95% formamide, 20 mM EDTA, 0.05% bromophenol blue, and 0.05% xylene cyanol FF (Sigma, St. Louis, MO) and then loaded into an 8% polyacrylamide gel (49:1 ratio of acrylamide to bisacrylamide) and electrophoresed at 30 W at 4°C. The gel was dried and exposed to X-ray film at −70°C for 6 to 12 h with an intensifying screen.

Direct Sequencing of the PCR Product. Samples containing mutation of the p53 gene (as revealed by a shift in mobility of the mutated exon in the SSCP gel) were reamplified by PCR using reaction cycle conditions similar to those described above. PCR products were purified by using a 5% nondenaturing polyacrylamide gel and then sequenced using a commercial DNA sequencing kit (U.S. Biochemical Corp., Cleveland, OH). The sequences of the various p53 gene exons were confirmed by sequencing both sense and antisense complementary DNA strands in an 8% polyacrylamide gel containing 7 M urea.

Results

Exons 4–8 were amplified by PCR and examined by SSCP to detect any mutations. A total of 20 ovarian cancers collected from two or more sites was examined. In 9 cases, mutations of the p53 gene were detected by a mobility shift in SSCP analysis (Table 1). In four cases, tumor tissue was collected from left and right ovaries as well as the omentum, in three cases tissue was collected from left and right ovaries and in two cases it was collected from one ovary and one omental site. All the patients had FIGO (International Federation of Gynecology and Obstetrics) Stage III disease. Eight had serous adenocarcinoma and one had mucinous adenocarcinoma. Six cases were grade 3 adenocarcinomas and three were grade 2.

The mobility shift patterns of various exons in cases 316, 332, 334, 349, 351, 357, and 377 are shown in Fig. 1. The direction and position of the mobility shift of the amplified DNA were different in tumors collected from different patients. However, tumor DNA collected from different sites within the same patient always had identical mobility shift patterns, suggesting the same p53 mutation in various tumor sites. In most cases, the wild type exons of the p53 gene (detected at positions

| Table 1 Mutation of the p53 gene in human ovarian cancers |
|---|---|---|---|---|---|
| No. | Specimen | Collection site | Histological type | Grade | FIGO* | Exon | Codon | Nucleotide mutation | Amino acid changed |
| 1 | 315T1 | Left ovary | Mucinous adenocarcinoma | 2 | III | 8 | 262 | GGA to CAT | Arg to His |
| 315T3 | Omentum | Mucinous adenocarcinoma | 2 | III | 8 | 262 | GGA to CAT | Arg to His |
| 2 | 316T1 | Left ovary | Undifferentiated adenocarcinoma | 3 | III | 7 | 245 | GGC to AGC | Gly to Ser |
| 316T2 | Right ovary | Undifferentiated adenocarcinoma | 3 | III | 7 | 245 | GGC to AGC | Gly to Ser |
| 316T3 | Omentum | Undifferentiated adenocarcinoma | 3 | III | 7 | 245 | GGC to AGC | Gly to Ser |
| 3 | 332T1 | Left ovary | Papillary serous cystadenocarcinoma | 3 | III | 8 | 273 | GTG to TGT | Arg to Cys |
| 332T2 | Right ovary | Papillary serous cystadenocarcinoma | 3 | III | 8 | 273 | GTG to TGT | Arg to Cys |
| 332T3 | Omentum | Papillary serous cystadenocarcinoma | 3 | III | 8 | 273 | GTG to TGT | Arg to Cys |
| 4 | 334T1 | Left ovary | Serous adenocarcinoma | 3 | III | 5 | 179 | CAT to CGT | His to Arg |
| 334T2 | Right ovary | Serous adenocarcinoma | 3 | III | 5 | 179 | CAT to CGT | His to Arg |
| 5 | 349T1 | Left ovary | Papillary serous cystadenocarcinoma | 3 | III | 4 | 53 | TGG to TAG | Trp to stop codon |
| 349T2 | Right ovary | Papillary serous cystadenocarcinoma | 3 | III | 4 | 53 | TGG to TAG | Trp to stop codon |
| 349T3 | Omentum | Papillary serous cystadenocarcinoma | 3 | III | 4 | 53 | TGG to TAG | Trp to stop codon |
| 6 | 351T1 | Left ovary | Papillary serous cystadenocarcinoma | 3 | III | 7 | 245 | GGC to GTC | Gly to Val |
| 351T2 | Right ovary | Papillary serous cystadenocarcinoma | 3 | III | 7 | 245 | GGC to GTC | Gly to Val |
| 7 | 357T1 | Left ovary | Papillary serous adenocarcinoma | 2 | III | 7 | 229 | Deletion of GT | Stop at codon 238 |
| 357T2 | Right ovary | Papillary serous adenocarcinoma | 2 | III | 7 | 229 | Deletion of GT | Stop at codon 238 |
| 357T3 | Omentum | Papillary serous adenocarcinoma | 2 | III | 7 | 229 | Deletion of GT | Stop at codon 238 |
| 8 | 377T1 | Left ovary | Papillary serous adenocarcinoma | 2 | III | 7 | 248 | CGG to GGG | Arg to His |
| 377T2 | Omentum | Papillary serous adenocarcinoma | 2 | III | 7 | 248 | CGG to GGG | Arg to His |
| 9 | B27A | Left ovary | Papillary serous cystadenocarcinoma | 3 | III | 8 | 285 | GAG to AAG | Glu to Lys |
| B27B | Right ovary | Papillary serous cystadenocarcinoma | 3 | III | 8 | 285 | GAG to AAG | Glu to Lys |

*a FIGO, International Federation of Gynecology and Obstetrics.

Fig. 1. Mobility shift of mutated exons of the p53 gene, as detected by PCR-SSCP analysis. The various exons were amplified from the genomic DNA of ovarian tumor. Arrowsheads, the position of the mutated exon exhibiting mobility shifts different from the normal control (N) in the SSCP gel. (T1, left ovary; T2, right ovary; T3, omentum.)
identical to those of the normal control) were also present as faint bands, in addition to the shifted exon of tumor DNA in the SSCP gel. This is probably due to the presence of normal cells in the tumor tissue.

The exact position and nature of the p53 mutations were detected by direct sequencing of the mutated exons amplified from the tumor DNA (Fig. 2; Table 1). Seven cases (315, 316, 332, 334, 351, 377, and B27) contained missense mutations that involved a change in amino acid residues; one case (349) has a nonsense mutation at codon 53 which generated a stop signal (TGG to TAG); and in one case (357), two nucleotides (GT) were deleted at codon 229, resulting in a frame-shift mutation and the generation of a stop signal at codon 238. A mutation at codon 245 was represented twice in cases 316 (GGC to AGC) and 351 (GGC to GTC), but the mutated nucleotide sequences differed so that different amino acid residues were encoded. The position and nature of the p53 gene mutation are unique among the tumors collected from different patients, confirming the broad spectrum of mutation in this gene. However, mutation of the p53 gene in tumors collected from different sites within the same patient always involves the identical codon. Therefore, both SSCP analysis and direct sequencing of mutated exons of the p53 gene show that ovarian tumors collected from different sites within the same patient have identical gene mutations.

Discussion

The unifocality of ovarian cancer has been questioned by Woodruff and others (11). This study provides strong evidence indicating that epithelial ovarian cancers have a unifocal origin. In all 9 patients studied, identical mutations of the p53 gene were observed in tumors collected from ovarian and omental sites within the same patient. It is highly unlikely that multiple primary tumors arising independently will share the identical mutation pattern of the p53 gene, although this may have been the case in human hepatocellular carcinoma, where codon 249 of the p53 gene is a mutational hotspot (10). However, there is no mutational hotspot of the p53 gene in human ovarian carcinomas as shown here and by other investigators (7, 8). A number of different p53 gene mutations scattered throughout exons 4–8 were found among the nine cases reported here. Each of the mutations was represented only once. In cases 316 and 351, even with the same codon involved, the mutated nucleotide sequences are different so that different amino acid residues are encoded.

A more likely explanation for the identical pattern of p53 gene mutation in tumors collected from the same patient is that ovarian cancer is unifocal in origin. The mutation occurs in cancer cells at the primary sites at an early stage of tumor development, prior to metastasis. Later, the progeny cells derived from the cancer cell clone that carried the mutated p53 gene spread to other pelvic and abdominal organs by shedding from the primary tumor and become implanted in the peritoneum.

Although the identical pattern of the p53 gene mutation supports the unifocal origin of ovarian cancer, different patterns of mutation among the various tumor sites within the same patient may not be considered conclusive evidence of a multifocal origin for these tumors. A variable pattern of p53 gene mutation among the various tumor sites within the same patient may not be considered conclusive evidence of a multifocal origin for these tumors. A variable pattern of p53 gene mutation could be explained as a late genetic change acquired by the cancer cells after they have spread to other sites. Our results are consistent with the observation of Pejovic et al. (12) in their cytogenetic studies showing similar patterns of chromosomal aberration in cancer cells cultured from bilateral ovarian tumors. Molecular genetic methods have allowed more precise identification of gene alterations in cancer cells and provide stronger evidence for a unifocal origin for ovarian cancer.

The use of specific point mutation to delineate the unifocal origin of human cancers has certain prerequisites. The mutation of the gene in the specific tumor studied must be frequent and diversified enough to allow different tumor clones to be detected by differences in the mutational pattern. In addition, the mutation must take place at an early stage in tumor development, before metastatic spread has occurred. The mutational pattern of the p53 gene in ovarian cancer fulfilled these two conditions. The same approach can be used to study other human cancers with similar patterns of mutation of the p53
gene. Determining point mutation by SSCP analysis and direct sequencing is a rapid and efficient screening assay. It would be a useful tool for studying the focality of cancer in addition to the currently existing methods including X-chromosome inactivation (13) and loss of heterozygosity (14).

None of the patients in this study has any family history of ovarian cancer. Our conclusion from this study is not necessarily applicable to familial ovarian cancer. The use of specific gene mutations in the study of unifocality of hereditary cancers may have limitations for at least two reasons: (a) if these p53 mutations are part of the germ line mutations, they cannot be used as markers since they would also be found in the normal cells; and (b) patients with familial ovarian cancer may be genetically predisposed to certain mutational hot spots such that different cells may acquire the same mutation independently and give rise to multiple tumors simultaneously. Thus determining point mutations in the p53 gene alone might not provide conclusive evidence for the study of unifocal origin in hereditary cancers. In this case, other complementary studies such as the specific inactivation of parental X-chromosomes in tumor clones would be essential (15).

The conclusion from this study that human ovarian cancer is largely unifocal in origin should be restricted to stage III epithelial carcinomas. The issue of focality is of particular interest in the case of borderline ovarian cancer which is histologically noninvasive but is sometimes associated with multiple serous peritoneal tumors (16). Further studies using p53 mutation and other clonality markers to determine the origin of these peritoneal implants in patients with borderline ovarian tumor are now in progress.

Acknowledgments

The authors are grateful to Drs. R. S. Berkowitz, H. M. Goodman, E. E. Sheets, M. G. Muto, L. L. Anderson, S. E. Brooks, and M. A. Steller for providing surgical specimens for the study and Dr. W. W. Welch for reviewing the pathology sections.

References

Unifocal Origin of Advanced Human Epithelial Ovarian Cancers

Chi-Ho Mok, Sai-Wah Tsao, Robert C. Knapp, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/52/18/5119

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.