Glutaminase and Glutamine Synthetase Activities in Human Cirrhotic Liver and Hepatocellular Carcinoma

Tetsuya Matsuno and Iori Goto

Department of Measles Virus, National Institute of Health, Musashimurayama, Tokyo 208 [T.M.], and Third Department of Internal Medicine, Nihon University, Tokyo 173 [I.G.], Japan

ABSTRACT

Glutamine synthetase and glutaminase activities in human cirrhotic liver tissues and hepatocellular carcinomas were determined for comparison with normal liver tissues. In hepatocellular carcinoma, glutamine synthetase activity was approximately one-thirde of that in normal liver, whereas no detectable change in the enzyme activity was observed in cirrhotic liver. Phosphate-dependent and phosphate-independent glutaminase activities were increased approximately 20-fold and 6-fold, respectively, both in the carcinoma and cirrhotic liver compared with those from normal liver. Oxyypolarographic tests showed that the rate of glutamine oxidation in the tumor and cirrhotic liver mitochondria was about 5-fold higher than that in the liver mitochondria. The rate of glutamine oxidation in the liver mitochondria was comparable to that in the cirrhotic liver and tumor mitochondria. Glutamine oxidation was inhibited by prior incubation of the mitochondria with 6-diazo-5-oxo-L-norleucine, which inhibited mitochondrial glutaminase. These results indicate that the product of glutamine hydrolysis, glutamate, is catabolized in the tumor and cirrhotic liver mitochondria to supply ATP.

In the liver and cirrhotic liver mitochondria, glutamate was oxidized via the routes of transamination and deamination. On the other hand, glutamate oxidation was initiated preferentially via a transamination pathway in the tumor mitochondria.

INTRODUCTION

Glutamine catabolism is of considerable interest because of its link with neoplastic transformation (1–3). An earlier report showed that glutaminase activities were increased in Morris hepatomas (4). Previously, we reported that the chicken hepatoma induced by the myelocytomatosis virus, MC29 strain, behaved like a trap for glutamine in blood and tissues of the tumor-bearing host (5). In the tumor tissue the activity of glutamine synthetase was extremely low compared with that of normal liver. The activities of glutaminase were high in the liver. Glutamine synthetase activity was approximately one-third of that in normal liver, while the activities of glutaminase were high in normal liver and rat origins (6). Our results shown in Table 1 address human and rat origins with the addition of 200 µl of mitochondrial suspension (4 mg protein/ml) in 0.25 M sucrose and 0.2 mM EDTA to 600 µl of 16 mM potassium phosphate buffer (pH 7.4) containing 0.25 M sucrose, 8 mM KCl, 1.6 mM MgCl₂, and 0.2 mM EDTA. The reaction mixture was initiated by the addition of 100 µl of 0.11 M glutamate or other respiratory substrates and 50 µl of 5 mM ADP were added.

Glutamine (99–100% pure) was obtained from Sigma. All other reagents were of the highest grade commercially available. Aminoxy-acetic acid and bromofuroic acid were neutralized with NaOH.

RESULTS AND DISCUSSION

Glutamine synthetase and glutaminase activities in hepatocellular carcinomas and cirrhotic liver tissues are presented in Table 1 for comparison with normal liver tissues. The ATP-dependent formation of glutamine from glutamate and ammonia, catalyzed by glutamine synthetase, plays an important role in normal cellular glutamine metabolism and this enzyme activity is high in the liver. Glutamine synthetase activity was reported to be low in several lines of rat hepatomas (13, 14). Similar results were observed in a series of hepatoma cells of human and rat origins (6). Our results shown in Table 1 address additional indications that this enzyme activity is markedly decreased in human hepatocellular carcinomas thus far examined. On the other hand, decrease in glutamine synthetase activity was not detectable in cirrhotic liver tissues.

Since prominent glutaminase activities were detectable in both the hepatoma and cirrhotic liver (Table 1), additional experiments on glutamine metabolism in these mitochondria were undertaken. Fig. 1 shows representative oxypolarographic tracings of oxygen consumption by liver and hepatocellular carcinoma mitochondria with either glutamine or glutamate as substrates. Glutamine oxidation was prominent in the tumor mitochondria (Fig. 1c), while mitochondria from the liver showed a feeble glutamine oxidation (Fig. 1a). Both liver and hepatoma mitochondria utilized glutamate well for oxidation (Fig. 1b, d). Prior incubation of the tumor mitochondria with...
6-diazo-5-oxo-L-norleucine at 0°C for 5 min markedly blocked glutamine oxidation (Fig. 1e) at 5 mM where both glutaminase activities in the mitochondrial homogenates were suppressed. Similar results were obtained with cirrhotic liver mitochondria (data not shown).

Fig. 2 shows the typical representative oxytetracycline tracings of the effects of aminoxyacetate and bromofuroate on the oxygen consumption by liver, cirrhotic liver, and the tumor mitochondria with glutamate as substrate. Oxygen uptake in the liver mitochondria was suppressed either by aminoxyacetate, an inhibitor of glutamate transaminase (15), or bromofuroate, an inhibitor of glutamate dehydrogenase (16) (Fig. 2, a, b). In the cirrhotic liver mitochondria, aminoxyacetate and bromofuroate inhibited the respiration, although the latter had a little inhibitory effect on the cirrhotic liver mitochondria compared with that on the liver mitochondria (Fig. 2, c, d). On the other hand, bromofuroate up to the concentration of 8 mM exerted little or no inhibitory effect on the respiration of the tumor mitochondria, while aminoxyacetate inhibited the respiration (Fig. 2, e, f).

These results indicate that while glutaminase activities were detectable in normal liver, such activities became much higher in the cirrhotic liver and the carcinoma mitochondria, thus allowing them a better oxidation of glutamine. The rate-limiting step in glutamine-dependent oxygen uptake was obviously not glutamine oxidation per se because it was inhibited by 6-diazo-5-oxo-L-norleucine, an inhibitor of glutaminase (17). Consistent with the above interpretation was the finding of little or no glutamine transaminase in these mitochondria. Thus, it was concluded that the product of glutamine hydrolysis, glutamate, was catabolized in the tumor and cirrhotic liver mitochondria to supply ATP. Similar results were obtained with mitochondria from rat hepatoma induced by 3'-methyl-4-dimethylaminobenzene. Furthermore, as shown in Fig. 2, in the liver and cirrhotic liver mitochondria, glutamate was oxidized via the routes of transamination and deamination. On the other hand, glutamate oxidation was initiated preferentially via the trans-
amination pathway in the tumor mitochondria. These results demonstrate the aberrations in the glutamine metabolism especially in the carcinoma tissues.

The cirrhotic liver still retained the liver function with respect to glutamine synthetase which plays an important role in the liver nitrogen metabolism. Prominent glutamine oxidation and low glutamine synthetase activity observed in the hepatocellular carcinoma tissue may be favorable to the bioenergetics of the tumor cells since the existence of an ATP-dissipating futile cycle due to glutamine synthetase is negligible.

The present findings make us conclude that the imbalance in the glutamine metabolism in the tumor cells is independent of the nature of carcinogenic agent and the species. This conclusion confirms an earlier statement by Prajda (18) that "the biochemical phenotype of liver cancer is independent both from the carcinogen and the species."

REFERENCES

Glutaminase and Glutamine Synthetase Activities in Human Cirrhotic Liver and Hepatocellular Carcinoma

Tetsuya Matsuno and Iori Goto


Updated version  Access the most recent version of this article at:  http://cancerres.aacrjournals.org/content/52/5/1192

E-mail alerts  Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions  To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions  To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.