The Human Prohibitin Gene Located on Chromosome 17q21 Is Mutated in Sporadic Breast Cancer

Takaaki Sato, Hiroko Saito, Jeff Swensen, Arnold Oliffant, Carla Wood, David Danner, Takashi Sakamoto, Kenichi Takita, Fujio Kasumi, Yoshio Miki, Mark Skolnick, and Yusuke Nakamura

Abstract

A gene called "prohibitin" was isolated as a candidate antiproliferating gene in rat liver cells. We have isolated the human homologue of the rat prohibitin gene and mapped it to chromosome 17q12-21 where a gene responsible for hereditary breast cancer was localized. DNA sequence analysis of 2 exons in this gene in 23 sporadic breast cancers, which showed loss of heterozygosity on the long arm of chromosome 17 or developed in patients 35 years old or younger, identified 4 cases of somatic mutation; 2 of these were nonsense mutations; 1 showed a 2-base deletion resulting in truncation of the gene product due to a frame shift; the other had a C to T transition in an intron adjacent to an intron-exon boundary. These results suggest that this gene may be a tumor suppressor gene and is associated with tumor development and/or progression of at least some breast cancers.

Introduction

Breast cancer is the most common cancer in women. One in 10 Caucasian women and one in 60 Japanese women will develop breast cancer in their lifetime. The highest risk factor for breast cancer is family history (1) which reflects dominantly inherited susceptibility (2–5) caused by at least three susceptibility loci, the p53 locus on chromosome 17p13 (6), a 17q-linked susceptibility locus (7), and one or more unmapped loci. Our studies based on LOH in breast tumors identified 17q21 as one of the commonly deleted regions (8, 9), indicating the possible presence of a tumor suppressor gene, in the same region as a gene responsible for familial breast cancer (7).

The rat prohibitin gene was isolated for its ability to negatively regulate cell proliferation (10). McClog et al. (11) isolated a rat prohibitin gene as one of a set of cDNAs derived from mRNAs which were more frequently expressed in normal liver than in regenerating liver. The gene caused an arrest of DNA synthesis by an in vitro assay in normal human fibroblast and HeLa cells, further demonstrating its antiproliferative activity (10). Moreover, it showed significant homology to the Cc gene, which was considered to be important for development and differentiation of Drosophila melanogaster (12). Hence, the function of the prohibitin gene is considered as an antiproliferating factor. The rat cDNA with a complete open reading frame was subsequently cloned (10) and used to isolate a fragment of human genomic DNA which was mapped by in situ hybridization to 17q12–17q21 (13). Because the prohibitin gene was assigned to this region, we undertook an analysis of it as a candidate for one of the tumor suppressor genes associated with breast cancer.

Materials and Methods

Materials. Tumor and normal tissues removed by mastectomy from 23 patients with primary breast cancer at the Cancer Institute Hospital, Tokyo, were analyzed for somatic mutations of the prohibitin gene. Extraction of DNAs from tumor and normal tissues was carried out according to the method described previously (8). Allelotype study of these 23 tumors was reported previously (8, 9).

RT-PCR and cDNA Cloning. To isolate human prohibitin cDNA, two oligonucleotides were synthesized for a RT-PCR reaction. Single-stranded cDNA was synthesized using 0.1 µg of human normal liver mRNA, 200 units of Moloney murine leukemia virus-reverse transcriptase (BRL) and a (5'-TCACCCTCAGCAGAGATGAT-3') primer. Double-stranded cDNAs were then synthesized and amplified with 2.5 units Taq polymerase (Cetus), the above primer, and the (5'-CGCTCTCGACCACGTAATGT-3') primer for 35 cycles (94°C, 1 min; 55°C, 2 min; and 72°C, 2 min). A 443-base pair product was cloned in pbuScript SK(-) (Stratagene, La Jolla, CA) and sequenced. A human fetal brain cDNA library (approximately 3.5 x 10^6 clones) (Clontech, Palo Alto, CA) was screened with the PCR product. Two positive clones were isolated and then sequenced. Intron-exon boundaries were determined by comparing the genomic DNA sequence derived from cosmid and/or phage clones with that of the cDNA clone.

Mutation Analysis. Sequence analysis was undertaken for examining somatic mutations in sporadic primary breast cancer. A pair of tumor and its corresponding normal DNAs was sequenced by the following method. Briefly, PCR products of exon 4 (nucleotides 301 to 443) which is highly conserved in the Drosophila, Cc gene (12), were amplified using two primers in the introns flanking exon 4 (5'-GTACTCCAGCTAGGCAAC-3' and 5'-CAGGAAACTAGCGAC-3') primer for 35 cycles (94°C, 1 min; 55°C, 2 min; and 72°C, 2 min). Products were cloned in pbScript II SK(-) (Stratagene, La Jolla, CA) and sequenced. Two internal primers in introns (5'-ACACTGTGTCTTCTACAG-3' and 5'-GTGCTCTGGGCCTGAGC-3') and Sequenase (T7 DNA polymerase, Pharmacia, Piscataway, NJ). The samples found alterations were tested the whole procedure more than twice to confirm the mutations.

Results

Isolation of Human Prohibitin Gene. To examine a possible role in human cancer, human prohibitin cDNA was isolated, based on its homology to the rat cDNA. First, a pair of oligonucleotides derived from the region of rat prohibitin gene, which was conserved in the Cc gene of D. melanogaster were used to create a 443-base pair RT-PCR product using human normal liver mRNA as a template. This PCR product was then
sequence. Nucleotides are numbered at the left. Two oligonucleotides used to
potential sites of N-linked glycosylation are indicated by dashed lines above the

Fig. 1. a, human prohibitin nucleotide sequence and predicted amino acids

The single amino acid difference at codon 107 between human (phenylalanine) and rat (tyrosine) prohibitin protein is enclosed in a box.

amino acid sequence. The single amino acid difference at codon 107 between human (phenylalanine) and rat (tyrosine) prohibitin protein is enclosed in a box.

Analysis of Somatic Mutation of the Prohibitin Gene in Sporadic Breast Cancer. We screened for somatic mutations in the prohibitin gene in DNAs from 23 breast tumors; 7 of these tumors developed in patients 35 years old or younger, 11 of the tumors showed significant reduction or loss of one of the polymorphic alleles on the long arm but not on the short arm of chromosome 17, and 5 tumors with LOH on chromosome 17q21-22 developed in patients 35 years old or younger. LOH in chromosome 17 was determined by restriction fragment length polymorphism analysis as described previously (8, 9). Furthermore, the EcoRI polymorphism of the human prohibitin gene (13) was also tested for the detection of LOH. We first examined the fourth exon since it is highly conserved in the homologous Drosophila Cc gene. The exon was amplified by PCR, subcloned, and then sequenced. The results are shown in Table 1 and Fig. 2, a and b. In one tumor, somatic mutation from CGC to CAT at codon 105 that resulted in amino acid change from arginine to histidine was detected as shown in Fig. 2a although a normal G is still observed in tumor because of the contamination of the normal cells. In another tumor, a 2-base deletion was found at codon 90-92 (Fig. 2b) which caused a

Table 1 Prohibitin gene mutations in sporadic breast cancers

Tumor Age (yr) LOH on ch17q* Codon Mutation* nucleotide Amino acid

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Age (yr)</th>
<th>LOH on ch17q*</th>
<th>Codon</th>
<th>Mutation* nucleotide</th>
<th>Amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>38</td>
<td>+</td>
<td>88</td>
<td>GTC-GCC</td>
<td>Val-Ala</td>
</tr>
<tr>
<td>342</td>
<td>60</td>
<td>+</td>
<td>105</td>
<td>CGC-CAC</td>
<td>Arg-His</td>
</tr>
<tr>
<td>120</td>
<td>35</td>
<td>+</td>
<td>91-92</td>
<td>TCA-CAC-TAC</td>
<td>Frame-shift</td>
</tr>
<tr>
<td>218</td>
<td>39</td>
<td>+</td>
<td>88</td>
<td>GTC/gg/gg/ga-ga-ga</td>
<td></td>
</tr>
</tbody>
</table>

* LOH was determined by RFLP analysis as described previously (8, 9).
* The underlined nucleotides were mutant; lowercase letters represent introns; uppercase letters represent exons.

Fig. 1. a, human prohibitin nucleotide sequence and predicted amino acids

Fig. 2. a and b. Prohibitin is highly conserved (99.6% identical at amino acid level and 90.3% identical at nucleotide level between rat and human). Furthermore, it showed significant homology to the Cc gene which is considered to be important in the development and differentiation of D. melanogaster (12) and is also homologous to the human NF1 gene (15, 16) and the yeast IRA2 gene (17) as shown in Fig. 1, b and c.

Analysis of Somatic Mutation of the Prohibitin Gene in Sporadic Breast Cancer. We screened for somatic mutations in the prohibitin gene in DNAs from 23 breast tumors; 7 of these tumors developed in patients 35 years old or younger, 11 of the tumors showed significant reduction or loss of one of the polymorphic alleles on the long arm but not on the short arm of chromosome 17, and 5 tumors with LOH on chromosome 17q21-22 developed in patients 35 years old or younger. LOH in chromosome 17 was determined by restriction fragment length polymorphism analysis as described previously (8, 9). Furthermore, the EcoRI polymorphism of the human prohibitin gene (13) was also tested for the detection of LOH. We first examined the fourth exon since it is highly conserved in the homologous Drosophila Cc gene. The exon was amplified by PCR, subcloned, and then sequenced. The results are shown in Table 1 and Fig. 2, a and b. In one tumor, somatic mutation from CGC to CAT at codon 105 that resulted in amino acid change from arginine to histidine was detected as shown in Fig. 2a although a normal G is still observed in tumor because of the contamination of the normal cells. In another tumor, a 2-base deletion was found at codon 90-92 (Fig. 2b) which caused a
DNAs extracted from tumor and its corresponding normal tissues were used to amplify prohibitin nucleotide 301 to 443 as described in "Materials and Methods." a, sequence analysis of the T342 PCR product shows a 2-base deletion from TCACACT (in the normal allele) to TCACACT (in the mutated allele) at codon 90-92, resulting in a frame-shift mutation.

Intron-exon boundary. All tumors listed in Table 1 were de

Discussion

In this report, we present the cloning of the human prohibitin gene and its somatic mutations in primary breast cancer. In one case (T120), it is clear that tumor cells could produce no normal prohibitin gene product due to the loss of one allele and frame-shift mutation on the other allele. In another three tumors, it is still uncertain that missense mutations in tumors 136 and 342 caused a significant effect on the prohibitin function or that the point mutation in the intron in tumor 218 induced an abnormal splicing. However, it is notable that a change from arginine to histidine found in tumor 342 is the same as one of the most frequent mutations (at codon 273) observed in the p53 gene (18).

These results suggested (a) that the defect of the prohibitin gene may have a significant role for development and/or progression of at least some breast carcinomas and (b) that the region in the prohibitin gene which was evolutionarily conserved in the *Drosophila* Cc gene might be one of the important functional domains of this gene. Although the function of this gene or whether it acts in dominantly negative fashion (19, 20) is still unclear, it is suspected that this gene works as a negative growth factor (21) or GAP like protein (22–25) since this gene product has homology to the *Drosophila* Cc protein, the yeast *IRA2* protein, and the NFI protein. The human gene appears to be a member of a gene family because Southern blot analysis of genomic DNA detected several bands (data not shown). Taken together, the prohibitin gene could be a new tumor suppressor gene in breast cancer. Further analysis of somatic and germ line mutations in the prohibitin gene will be able to reveal the significant association with tumor development and/or progression in primary breast cancer.

Acknowledgments

We are grateful to Drs. Mike Jones, Futoshi Akiyama, Goi Saka moto, Mutusko Miyagi, Takashi Imai, and Akira Horii for helpful advice and discussions. We would also like to thank Kiyoshi Noguchi for preparation of the manuscript.

References

HUMAN PROHIBITIN GENE

The Human Prohibitin Gene Located on Chromosome 17q21 Is Mutated in Sporadic Breast Cancer

Takaaki Sato, Hiroko Saito, Jeff Swensen, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/52/6/1643

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.