Steroid Production in Different Parts of Malignant and Benign Ovarian Tumors

in Vitro

Monica Ridderheim, Carl Gustav Mählck, Gunnar Selstam, Ulf Stendahl, and Torbjörn Bäckström

Departments of Gynecological Oncology [M. R. U. S.], Obstetrics and Gynecology [C. G. M. T. B.], and Physiology [G. S.], University of Umeå, Umeå, and the Department of Obstetrics and Gynecology, University of Uppsala, Uppsala [T. B.], Sweden

ABSTRACT

Pieces of ovaries and tumors from 45 patients (19 with malignant epithelial tumors, 14 with benign epithelial tumors, and 12 with normal postmenopausal ovaries) were incubated, and the release of steroid hormones from different parts of the tumors and from the contralateral ovaries was measured. Tumor tissue (mainly tumor cells with a small number of stromal cells), tumor base tissue (more stromal cells than tumor cells), and control ovaries were preincubated in oxygenated 4-(2-hydroxypiperazine)-1-piperazineethanesulfonic acid-minimum essential medium buffer at 37°C for 30 min followed by a 3-h incubation in fresh, oxygenated medium. Progesterone, androstenedione, testosterone, and estradiol were measured in the medium by radioimmunoassay at the end of the incubation period.

Malignant tumors released more progesterone and androstenedione than benign tumors or postmenopausal control ovaries. In contrast, benign tumors released more testosterone than malignant tumors or control ovaries. Release of estradiol was low and not significantly different among control ovaries and malignant and benign tumor tissue.

Different parts of the tumors differed in steroid hormone release. Tissue samples containing more tumor cells than stromal cells released more progesterone than those with predominantly stromal cells. Thus, malignant tumors had an active steroid secretion. Progesterone was the main steroid released.

INTRODUCTION

In a series of reports from this group and others it has been shown that women with ovarian epithelial carcinomas have elevated plasma levels of steroid hormones. The steroid concentration in blood parallels the tumor volume (1-8), increases with an increase in tumor size (1-3, 5), and increases prior to tumor recurrence (9). The concentration of progesterone at diagnosis is related to prognosis (10). Not only malignant but also benign ovarian tumors produce steroids (8, 11-13).

The production site is believed to be the ovary containing the tumor since a higher concentration is found in the ovarian vein draining the tumorous ovary as compared with the contralateral ovarian vein (7, 11, 14-15). Following oophorectomy plasma levels of androstenedione are decreased, suggesting that the origin of the steroid production is the tumorous ovary (13). There are reports showing that the remaining stroma of the ovary is activated in a postmenopausal ovary containing cancerous tissue, with signs of steroid production (16-17). Rome et al. (18) described characteristic changes of condensation and/or luteinization in tumors associated with high urinary excretion of estrogen, indicating that it was not the tumor cells but the activated remaining stroma that produced the steroid. Some authors suggest that the hyperplastic stroma of the tumorous ovary produces androgens which can be peripherally aromatized to estrone and estradiol (19, 20). Alternative pathways may contribute, such as conversion of adrenal steroids. Elevated levels of dehydroepiandrosterone sulfate, an androgen of adrenal origin, was found in the serum of patients with "non-endocrine" ovarian carcinoma (21). Poels et al. (22) have characterized an ovarian carcinoma cell line which is capable of releasing estradiol into the culture medium; this indicates that hormone production by the tumor cells per se should be considered an additional possibility. These results are supported by Wimalasena et al. (23), who cultured cells from in situ epithelial ovarian carcinoma and demonstrated secretion of estradiol and progesterone.

In order to assess the production site of steroid hormones, tissues from different parts of malignant and benign tumors and from contralateral ovaries were studied in vitro.

MATERIALS AND METHODS

Patients. Forty-five women were recruited at the Departments of Obstetrics and Gynecology and Gynecological Oncology, University Hospital of Umeå (Umeå, Sweden), from February 1987 to October 1991. The mean age was 60 years (range, 28-84 years). Thirty-five women were postmenopausal. Nineteen had malignant or borderline epithelial tumors, and 14 had benign epithelial tumors. Twelve patients with normal postmenopausal ovaries constituted the control group. Histological examination revealed the following division into Federation Internationale des Gynecologistes et Obstetristeres types (24): serous carcinoma (n = 7); endometroid carcinoma (n = 5); clear-cell carcinoma (n = 1); anaplastic carcinoma (n = 1); serous tumor of borderline malignancy (n = 3); mucinous tumor of borderline malignancy (n = 2); benign serous tumors (n = 8); and benign mucinous tumors (n = 6). Six of the carcinomas were poorly and eight moderately differentiated. Seven patients with carcinomas suffered from Federation Internationale des Gynecologistes et Obstetristeres stages III-IV disease (extension outside pelvis), and seven patients had stages I-II disease (pelvic extension) (24). Tissue from the contralateral ovary was incubated in 18 of 33 tumor cases. In 10 patients, six with malignant and four with benign tumors, the contralateral ovary contained only stromal cells. In the remaining cases the tumors were bilateral.

Operative Procedure. All patients were subjected to laparotomy due to pelvic masses. The abdominal wall and the peritoneum were opened, taking care to restrict leakage of blood into the peritoneal cavity. Ascitic fluid was collected and stored on ice while awaiting tumor surgery. In cases with no ascites the abdominal cavity was rinsed with 500-1,000 ml physiological saline, and the fluid was aspirated and stored as above. Once the tumor had been removed, tissue samples were taken from two different parts of the tumor. One sample was taken from any part of typical viable tumorous appearance ("tumor"), and the other was taken from just beneath the oviduct ("tumor base"). The latter was chosen from an easily identified structure where tissue of remaining ovarian stromal origin usually could be found. In addition, one tissue sample was taken from the contralateral ovary. Each tissue piece was divided into two; one part was sent for histological examination, and the other was stored in a transport medium, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-minimum essential medium buffer (pH 7.4) and cooled on ice until incubation.

Histological Examination. The relationship between tumor cells and stromal cells in each tissue sample was estimated using the method of point counting (25). A test grid containing 86 points was randomly laid on each microscopic image. Ten fields (×120 magnification) per image were counted manually. Tissue samples were mostly a mixture of tumor cells and histologically normal stromal cells. However, "tumor" tissue samples from carcinomas contained more tumor cells (69.4 ± 5.4%) than normal stromal cells. On the contrary, tissue samples from "tumor base" contained more stromal cells (82.3 ± 7.0%) than tumor cells. In tissue from tumors of borderline
malignancy "tumor" samples contained 28.2% tumor cells (±12.5%), while "tumor base" tissue was made up of 9.8% (±7.9%) tumor cells. In the benign cases both "tumor" and "tumor base" samples contained mostly stromal cells and a small amount (6.4 ± 1.0% and 4.4 ± 1.2%, respectively) of epithelial cells outlining the cysts.

Incubation Procedure. Tissue from each station (tumor, tumor base, contralateral ovary, and control ovary) was kept on ice during dissection under the microscope to remove surrounding tissues and large blood vessels; then it was divided into four small pieces of about 10–30 mg each. After wet weight measurements, the pieces were put in air-tight glass vials with 1 ml of minimum essential medium buffered with 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Sigma, St. Louis, MO), with Earle’s salt and L-glutamine (Gibco Laboratories, Grand Island, NY). The material was oxygenated with 100% O2 for 1 min (26), preincubated in a gently gyrating water bath at 37°C for 30 min, put into another vial, oxygenated, and then incubated for 3 h at 37°C with the same amount of fresh medium (16). All incubations were performed in quadruplicate. After incubation the tissue was removed and the medium stored at −20°C until analysis. In order to investigate the effect of substrate on androstenedione and estradiol release, tissues from postmenopausal ovaries of five control patients were incubated in quadruplicate with the addition of progesterone 100 ng/ml (Sigma) or testosterone 100 ng/ml (Sigma).

Biochemical Assay. The progesterone, androstenedione, estradiol, and testosterone radioimmunoassays have been described earlier in detail (27, 28). Progesterone and estradiol were analyzed in medium from all 45 patients. Due to a shortage of medium androstenedione was analyzed in medium from 29 patients including all controls and testosterone was assayed in medium from 16 other patients and 6 controls. All samples from the same patient were assayed in the same run. The interassay coefficients of variation were 12%, 10%, 13%, and 10%, and the intrasay coefficients of variation were 6%, 8%, 10%, and 8% for progesterone, androstenedione, estradiol, and testosterone assays, respectively.

Statistics. The mean of each set of quadruplets was calculated and used for further statistical analysis. Two-way analysis of variance was used when several locations were simultaneously analyzed. If the first analysis of variance was significant, the differences between steroid levels in various tissue incubations were tested ad hoc by using the LSDT at 0.05, 0.03, and 0.01 levels of significance per experiment (29). All group values are given as means ± SE. The SEs plotted in the figures are calculated separately within each subgroup. Two-tailed P values are presented. The Mann-Whitney U-test was used to test between two independent groups. Wilcoxon’s matched-pair signed-rank test was used to test between paired incubations with and without addition of progesterone or testosterone (30).

RESULTS

Release of Progesterone. Malignant tumors released significantly more progesterone into the incubation medium than benign tumors or control ovaries (P < 0.05 for both, LSDT). Benign tumors did not release more progesterone than did control ovaries. Hormone concentrations in the medium of control ovaries, malignant and benign tumors (both "tumor" and "tumor base" stations), are shown in Fig. 1 and Table 1. In the cancer cases more progesterone was released from the "tumor" station than from the "tumor base" (P < 0.03, LSDT). In benign tumors no significant difference in concentration was noted among the three stations. Progesterone release from the contralateral ovary in tumor patients did not differ from that found in controls.

Release of Androstenedione. Significantly more androstenedione was released from malignant tumors than from benign tumors or control ovaries (Fig. 2) (P < 0.05 for both, LSDT). Hormone concentrations for all three stations are shown in Table 1. There was no difference in androstenedione concentration between the two stations "tumor" and "tumor base." Due to a low number of observations of contralateral ovaries no statistical comparison was made between contralateral ovaries and the other tissue stations (Fig. 2).

Release of Testosterone. Benign tumors released more testosterone than did malignant tumors or control ovaries (Table 1; P < 0.05 for both, LSDT). There was no difference in testosterone concentration in medium from the three stations "tumor," "tumor base," and contralateral ovary in benign or malignant cases (Fig. 3). The contralateral ovary, both malignant and benign, released more testosterone than did controls (P < 0.05 and 0.03, respectively, LSDT) (Fig. 3).

2 The abbreviations used are: LSDT, least significant difference test; EGF, epidermal growth factor.
The addition of testosterone to incubation medium led to a 6-fold increase in androstenedione concentration but did not affect the levels of estradiol (Table 2).

DISCUSSION

More progesterone and androstenedione were released from the tumors of stages III and IV: for progesterone, 240 (± 110) nmol/g (n = 8) versus 12 (± 2.2) nmol/g (n = 6) (P < 0.002, Mann-Whitney U-test). No differences in concentrations of progesterone between control ovaries and tumors were noted. Malignant tumor tissue released more steroids per mg tissue than benign tumor tissue or postmenopausal ovaries. This indicates that steroid release was not only related to tumor volume but also that malignant tissue was more active in releasing steroids. The difference between malignant and benign tissue was pronounced for progesterone release, an interesting finding since previous reports reveal prognostic information from plasma concentrations of progesterone (9, 10).

In this study, tissue samples consisted of a mixture of stromal and tumor cells. Tissue samples were characterized by areas of “tumorous appearance” containing more tumor cells than stromal cells, and “tumor base” tissue containing more stromal than tumor cells. The results could not determine the site (cell type) of hormone production. The results showed a higher release of progesterone from biopsy samples with more tumor cells than stromal cells. However, the biopsy samples from low-grade tumors released less than tumors of high grade. One explanation could be that a tumor of low grade contains fewer stromal cells than tumors of higher grade. The tumor cells might produce substances that exert a paracrine stimulation of progesterone production from the stromal cells. Since biopsy samples from the tumor base contained fewer tumor cells, fewer stromal cells might have been activated, resulting in a low release of progesterone. In low-grade tumors the absolute number of stromal cells is low, and that could be the reason for a lower progesterone release.

If the high steroid production in tumors is not inherent, then what stimulates the steroid production of ovarian tumors? In earlier studies of ovarian carcinoma, plasma concentrations of follicle-stimulating hormone and luteinizing hormone have been shown to be decreased in women with large tumor volume and increased steroid production, indicating a negative feedback (31). Simultaneously, however, elevated levels of plasma levels of steroid hormones originate from the tumorous ovary and are not due to increased production by the adrenals. This is further supported by low serum concentrations of steroids in women with malignant disease of nonovarian origin (9).

In this study, tissue samples consisted of a mixture of stromal and tumor cells. Tissue samples were characterized by areas of “tumorous appearance” containing more tumor cells than stromal cells, and “tumor base” tissue containing more stromal than tumor cells. The results could not determine the site (cell type) of hormone production. The results showed a higher release of progesterone from biopsy samples with more tumor cells than stromal cells. However, the biopsy samples from low-grade tumors released less than tumors of high grade. One explanation could be that a tumor of low grade contains fewer stromal cells than tumors of higher grade. The tumor cells might produce substances that exert a paracrine stimulation of progesterone production from the stromal cells. Since biopsy samples from the tumor base contained fewer tumor cells, fewer stromal cells might have been activated, resulting in a low release of progesterone. In low-grade tumors the absolute number of stromal cells is low, and that could be the reason for a lower progesterone release.

If the high steroid production in tumors is not inherent, then what stimulates the steroid production of ovarian tumors? In earlier studies of ovarian carcinoma, plasma concentrations of follicle-stimulating hormone and luteinizing hormone have been shown to be decreased in women with large tumor volume and increased steroid production, indicating a negative feedback (31). Simultaneously, however, elevated levels of plasma levels of steroid hormones originate from the tumorous ovary and are not due to increased production by the adrenals. This is further supported by low serum concentrations of steroids in women with malignant disease of nonovarian origin (9).

In this study, tissue samples consisted of a mixture of stromal and tumor cells. Tissue samples were characterized by areas of “tumorous appearance” containing more tumor cells than stromal cells, and “tumor base” tissue containing more stromal than tumor cells. The results could not determine the site (cell type) of hormone production. The results showed a higher release of progesterone from biopsy samples with more tumor cells than stromal cells. However, the biopsy samples from low-grade tumors released less than tumors of high grade. One explanation could be that a tumor of low grade contains fewer stromal cells than tumors of higher grade. The tumor cells might produce substances that exert a paracrine stimulation of progesterone production from the stromal cells. Since biopsy samples from the tumor base contained fewer tumor cells, fewer stromal cells might have been activated, resulting in a low release of progesterone. In low-grade tumors the absolute number of stromal cells is low, and that could be the reason for a lower progesterone release.

If the high steroid production in tumors is not inherent, then what stimulates the steroid production of ovarian tumors? In earlier studies of ovarian carcinoma, plasma concentrations of follicle-stimulating hormone and luteinizing hormone have been shown to be decreased in women with large tumor volume and increased steroid production, indicating a negative feedback (31). Simultaneously, however, elevated levels of plasma levels of steroid hormones originate from the tumorous ovary and are not due to increased production by the adrenals. This is further supported by low serum concentrations of steroids in women with malignant disease of nonovarian origin (9).

In this study, tissue samples consisted of a mixture of stromal and tumor cells. Tissue samples were characterized by areas of “tumorous appearance” containing more tumor cells than stromal cells, and “tumor base” tissue containing more stromal than tumor cells. The results could not determine the site (cell type) of hormone production. The results showed a higher release of progesterone from biopsy samples with more tumor cells than stromal cells. However, the biopsy samples from low-grade tumors released less than tumors of high grade. One explanation could be that a tumor of low grade contains fewer stromal cells than tumors of higher grade. The tumor cells might produce substances that exert a paracrine stimulation of progesterone production from the stromal cells. Since biopsy samples from the tumor base contained fewer tumor cells, fewer stromal cells might have been activated, resulting in a low release of progesterone. In low-grade tumors the absolute number of stromal cells is low, and that could be the reason for a lower progesterone release.

If the high steroid production in tumors is not inherent, then what stimulates the steroid production of ovarian tumors? In earlier studies of ovarian carcinoma, plasma concentrations of follicle-stimulating hormone and luteinizing hormone have been shown to be decreased in women with large tumor volume and increased steroid production, indicating a negative feedback (31). Simultaneously, however, elevated levels of plasma levels of steroid hormones originate from the tumorous ovary and are not due to increased production by the adrenals. This is further supported by low serum concentrations of steroids in women with malignant disease of nonovarian origin (9).

In this study, tissue samples consisted of a mixture of stromal and tumor cells. Tissue samples were characterized by areas of “tumorous appearance” containing more tumor cells than stromal cells, and “tumor base” tissue containing more stromal than tumor cells. The results could not determine the site (cell type) of hormone production. The results showed a higher release of progesterone from biopsy samples with more tumor cells than stromal cells. However, the biopsy samples from low-grade tumors released less than tumors of high grade. One explanation could be that a tumor of low grade contains fewer stromal cells than tumors of higher grade. The tumor cells might produce substances that exert a paracrine stimulation of progesterone production from the stromal cells. Since biopsy samples from the tumor base contained fewer tumor cells, fewer stromal cells might have been activated, resulting in a low release of progesterone. In low-grade tumors the absolute number of stromal cells is low, and that could be the reason for a lower progesterone release.

If the high steroid production in tumors is not inherent, then what stimulates the steroid production of ovarian tumors? In earlier studies of ovarian carcinoma, plasma concentrations of follicle-stimulating hormone and luteinizing hormone have been shown to be decreased in women with large tumor volume and increased steroid production, indicating a negative feedback (31). Simultaneously, however, elevated levels of plasma levels of steroid hormones originate from the tumorous ovary and are not due to increased production by the adrenals. This is further supported by low serum concentrations of steroids in women with malignant disease of nonovarian origin (9).

In this study, tissue samples consisted of a mixture of stromal and tumor cells. Tissue samples were characterized by areas of “tumorous appearance” containing more tumor cells than stromal cells, and “tumor base” tissue containing more stromal than tumor cells. The results could not determine the site (cell type) of hormone production. The results showed a higher release of progesterone from biopsy samples with more tumor cells than stromal cells. However, the biopsy samples from low-grade tumors released less than tumors of high grade. One explanation could be that a tumor of low grade contains fewer stromal cells than tumors of higher grade. The tumor cells might produce substances that exert a paracrine stimulation of progesterone production from the stromal cells. Since biopsy samples from the tumor base contained fewer tumor cells, fewer stromal cells might have been activated, resulting in a low release of progesterone. In low-grade tumors the absolute number of stromal cells is low, and that could be the reason for a lower progesterone release.

If the high steroid production in tumors is not inherent, then what stimulates the steroid production of ovarian tumors? In earlier studies of ovarian carcinoma, plasma concentrations of follicle-stimulating hormone and luteinizing hormone have been shown to be decreased in women with large tumor volume and increased steroid production, indicating a negative feedback (31). Simultaneously, however, elevated levels of plasma levels of steroid hormones originate from the tumorous ovary and are not due to increased production by the adrenals. This is further supported by low serum concentrations of steroids in women with malignant disease of nonovarian origin (9).

In this study, tissue samples consisted of a mixture of stromal and tumor cells. Tissue samples were characterized by areas of “tumorous appearance” containing more tumor cells than stromal cells, and “tumor base” tissue containing more stromal than tumor cells. The results could not determine the site (cell type) of hormone production. The results showed a higher release of progesterone from biopsy samples with more tumor cells than stromal cells. However, the biopsy samples from low-grade tumors released less than tumors of high grade. One explanation could be that a tumor of low grade contains fewer stromal cells than tumors of higher grade. The tumor cells might produce substances that exert a paracrine stimulation of progesterone production from the stromal cells. Since biopsy samples from the tumor base contained fewer tumor cells, fewer stromal cells might have been activated, resulting in a low release of progesterone. In low-grade tumors the absolute number of stromal cells is low, and that could be the reason for a lower progesterone release.

Table 2. Mean ± SE of steroid hormone concentrations (nmol/g tissue) in incubation media of 5 postmenopausal control ovaries without (no addition) and with addition of progesterone (100 ng/incubation) or testosterone (100 ng incubation).

<table>
<thead>
<tr>
<th>Hormone</th>
<th>No addition</th>
<th>Progesterone addition</th>
<th>Testosterone addition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androstenedione (nmol/g)</td>
<td>11 ± 2.3</td>
<td>21 ± 2.3</td>
<td>66 ± 13.5</td>
</tr>
<tr>
<td>Testosterone (nmol/g)</td>
<td>3.6 ± 1.1</td>
<td>4.0 ± 0.7</td>
<td>12 ± 2.2</td>
</tr>
<tr>
<td>Estradiol (nmol/g)</td>
<td>7.4 ± 1.4</td>
<td>128 ± 62*</td>
<td></td>
</tr>
</tbody>
</table>

*P < 0.001.
human chorionic gonadotropin are noted, and human chorionic gonadotropin could be a stimulating factor of steroid production (29). Mac Donald et al. (20) suggest that ovarian tumors produce a growth-promoting factor that induces hyperplasia of the stroma, while the increased luteinizing hormone levels normally present in postmenopausal women stimulate steroidogenesis. Possible stimulators are EGF promoting factor that induces hyperplasia of the stroma, while the human chorionic gonadotropin are noted, and human chorionic gonadotropin are acknowledged for valuable help with morphometry.

ACKNOWLEDGMENTS

Ms. A. Andersson is acknowledged for her skillful technical assistance. Björn Risberg, M.D., Ph.D., Head of the Department of Pathology, Örebro, is acknowledged for valuable help with morphometry.

REFERENCES

Steroid Production in Different Parts of Malignant and Benign Ovarian Tumors *in Vitro*

Mona Ridderheim, Carl Gustav Mählck, Gunnar Selstam, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/53/10/2309

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.