Effects of Caloric Restriction and Dietary Fat on Epithelial Cell Proliferation in Rat Colon

Gideon Steinbach, Siva P. Kumar, Bandaru S. Reddy, Martin Lipkin, and Peter R. Holt

Department of Medicine, St. Luke's/Roosevelt Hospital Center and Columbia University, New York, New York 10025 [S. P. K. B. S. R.]; and Memorial Sloan-Kettering Cancer Center, New York, New York 10021 [M. L.]

ABSTRACT

Epidemiological studies indicate that caloric intake and dietary fat content influence colorectal carcinogenesis. In rodents, caloric restriction reduces, and some fats increase, carcinogen-induced colon cancer incidence. The present study was designed to investigate the effects of caloric restriction on colonic cell proliferation (CCP) in carcinogen-treated or control rats fed low- or high-fat diets. F344 rats were treated with azoxymethane (15 mg/kg x 2) and then fed an isocaloric AIN 76A diet containing either 5 or 23% corn oil, ad libitum or calorie-restricted to 70 or 80% of the kilocalories consumed by ad libitum rats. Biopsies of the distal colon were taken at 10 and 20 weeks, and rats were sacrificed at 21 or 34 weeks on the experimental diets. Distal CCP was determined by microautoradiography after [3H]thymidine labeling in vivo or presacrifice administration in vitro. A labeling index and number of labeled cells per crypt column were significantly reduced by caloric restriction at all time points (10, 20, 21, 34 weeks). Caloric restriction reduced CCP in high-fat and low-fat-fed rats and in azoxymethane-treated and control rats. High fat resulted in decreased CCP in the distal colon compared to low fat at 34 weeks but not earlier. The findings indicate that: (a) caloric restriction is effective in favorably modulating CCP, an intermediate biomarker of colon cancer risk; (b) a high fat ad libitum diet, which increased tumor yield, does not increase distal colon proliferation; (c) dietary fat intake alters proliferation in a manner differing from that induced by changing dietary caloric intake.

INTRODUCTION

Population and case control studies have shown positive associations between dietary fat and caloric intake and risk of colon cancer (1-6). In those studies, the independent contributions of total caloric intake, dietary fat content, and other components of energy balance (i.e., metabolic rate, exercise, body composition, and body mass index) cannot be evaluated, although information on each factor and risk for colon cancer would be important.

In recent years there has been a revival of interest in the relationship between caloric intake and the risk of development of cancer. Caloric restriction has reduced spontaneous and carcinogen-induced tumors in rodent models. Early studies by Moreshi (7) and Rous (8) noted growth retardation of implanted sarcomas in underfed mice. In the 1940s Tannenbaum (9) observed that caloric restriction, produced by limiting carbohydrate calories, lowered the incidence of several spontaneous and induced tumors in rodents.

Subsequent investigators have expanded these findings (10, 11), showing that caloric restriction reduced the incidence of carcinogen-induced colon cancer in rats (12-15). The question of the relative importance of fat and total calories in colon carcinogenesis has recently addressed. Klurfeld et al. (14) showed that rats fed a CR diet at 60% of AL caloric intake had a lower incidence of carcinogen-induced breast and colon tumors than AL-fed rats consuming one-half the total fat (14). Kumar et al. (15) found a dose-dependent reduction of carcinogen-induced colon tumors in CR rats consuming a HF, 23% corn oil diet, at 80 and 70% of AL caloric intake. In the latter study, both fat and caloric intake were positively related to colon tumor risk (15), but body composition and weight had less association with risk. Other determinants of metabolic balance, including exercise, have reduced the incidence of carcinogen-induced colon tumors (16, 17), and may have a role in colon carcinogenesis.

The long-term effects of caloric and fat intake upon intermediate biomarkers of colon cancer risk have not been determined. An intermediate biomarker that has been related to colonic neoplasia is epithelial cell proliferation, measured by [3H]TdR or bromodeoxyuridine incorporation into nuclear DNA of proliferating cells in rodent or human colorectal crypts (18). Previous data on the effect of fat intake on colorectal cell proliferation were conflicting, since a 23.5% corn oil diet in mice increased labeling indices after 10 or 15 weeks (19), while 30% corn oil or 27% lard diet for 4 weeks had no effects in rats (20). Studies of food restriction have been more consistent. A 3-day fast lowers colorectal proliferation by 70% in rodents (21), and food restriction to 25% of AL intake for 7 month reduced [3H]TdR incorporation in several tissues, including the colon (22). In our laboratory, lowering dietary intake to 60% of AL intake reduced colorectal cell proliferation in young and aging rats (23).

The present study was designed to investigate the effects of caloric restriction and HF and LF intake on AOM-induced colon tumors in rats; whether parallel changes occurred in cell proliferation, and whether modified cell proliferation was associated with differences in the development of colon tumors. Effects of caloric restriction and HF and LF on cell proliferation in rats not treated with AOM also were studied.

MATERIALS AND METHODS

In 2 separate experiments (A and B), groups of rats were treated similarly. One part of this study, the effects of caloric restriction on colon tumor formation (experiment B) was described previously (15).

Inbred male F344 rats obtained at weaning (Charles River Breeding Laboratories, Wilmington, MA) were randomly divided at 5 weeks old into an AL-fed LF 5% corn oil diet or a HF 23% corn oil diet group. The composition and intake of the experimental semi-purified diet is shown in Table 1. The rats were treated with AOM (15 mg/kg body weight s.c.) or saline s.c. (controls) once weekly for 2 weeks. Four days later, animals were further separated into AL-fed and CR groups resulting in 4 dietary groups in each study: HF AL, HF CR, LF AL, and LF CR rats. HF CR rats were CR to 80% of HF AL food intake in both experiments. CR rats were pair fed to their respective AL groups. The composition of all diets was adjusted so that all animals consumed similar amounts of minerals, vitamins, and nonnutritive fiber (Table 1).

In experiment A, 8 AOM-treated and 6 control rats were studied in each of the 4 dietary groups. After 10 and 20 weeks on the experimental diets, the

Received 8/28/92; accepted 4/7/93.

1 The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

2 This work was supported in part by NIH Grants AG00124, CA17613, and CA37663, the American Cancer Society, and the Overseas Maritime Corporation.

3 To whom requests for reprints should be addressed, at the Department of Gastrointestinal Oncology and Digestive Diseases, M. D. Anderson Cancer Center, Houston, TX 77030.

4 The abbreviations used are: CR, calorie-restricted; [3H]TdR, [3H]thymidine; AL, ad libitum; HF, high fat; LF, low fat; AOM, azoxymethane; LI, labeling index.
animals were subjected to colonoscopy to the splenic flexure under Nembutal sedation, using an Olympus pediatric bronchoscope (BF-482), and 3 to 10 biopsies (average, 8) were taken from the descending colon (Olympus biopsy forceps BF-22C). Four of 56 rats died after this procedure. Both AOM and control rats were sacrificed after 21 weeks on the experimental diets. Biopsies and autopsy sections of distal colon were processed for cell proliferation studies. In experiment B, all AOM-treated rats in each of the four dietary groups were sacrificed after 34 weeks on the experimental diet for analysis of the number and type of colonic tumors. Six rats from each dietary group were randomly selected for colonic cell proliferation studies of the proximal and distal colon.

Colonic Cell Proliferation Analysis. One hr prior to sacrifice, rats were given injections of \(^{3}H\)dThd, 1 μCi/g of body weight i.p. Sections of normal appearing distal colon from the mid-descending colon (experiments A and B), and from the ascending colon (experiment B) were fixed in 10% phosphate-buffered formalin and processed for autoradiography and histology as previously described (24). Twenty-five longitudinally oriented crypts were scored to determine crypt height defined as total cell number per crypt column, and the number and position of labeled cells within each crypt column. The LI was calculated as

\[
\text{Labeled cells} \times 100
\]

Calculations were made for each of 5 crypt compartments of equal size. compartment 1 being at the base of the crypt and compartment 5 near the luminal surface. The distribution of the proliferative zone was measured as a percentage of total labeled cells present per crypt compartment. Colonic biopsies were incubated with \(^{3}H\)dThd (1 μCi/ml) in vitro, and processed as above, except that less than 25 crypts were obtained in some specimens. In experiment B, 4 to 6 animals from each group were randomly selected at 34 weeks for body composition analysis, performed by Nutrition International, Inc. (New Brunswick, NJ) (15). Proximate analysis for protein, fat, and ash was conducted by the standard methods of the American Association of Official Analytical Chemists (25). Briefly, this method includes the measurement of water content of the carcass by lyophilization. The carcass is then ground and an aliquot (about 10 g) is used for determination of total fat and protein by the standard methods of the American Association of Official Analytical Chemists (25). Briefly, this method includes the measurement of water content of the carcass by lyophilization. The carcass is then ground and an aliquot (about 10 g) is used for determination of total fat and protein by chemical assay. Total ash is determined gravimetrically following the ashing of the sample at >500°C in a furnace. The difference between the protein, fat, ash, and dry weight of sample represents carbohydrate (not measured directly).

Statistical Analysis. Differences in \(^{3}H\)dThd labeling parameters between groups were analyzed by unpaired t tests.

RESULTS

General Observations. Mean caloric intake was similar in the high and LF AL-fed groups (Table 1, experiment B), but the HF-fed rats consumed over 3-fold more fat than was consumed by the LF group. The body weight of CR rats was lower than that of the AL-fed animals, but all groups gained weight throughout the experiment (Table 2). Body composition after 34 weeks on the four dietary regimens showed no difference in percentage of body weight that represented protein; however, the HF AL animals showed more body fat than the LF AL animals (49.8 ± 12% versus 42.4 ± 2%), P < 0.05. The CR rats also showed less fat than either HF or LF AL animals (Table 2).

Tumor Data. The CR rats at 34 weeks showed decreased tumor incidence and multiplicity, significant (P < 0.05), in the HF group (Table 2) (15). No gross tumors were found in the colon at the time of autopsy 21 weeks after administration of AOM in any animal group. Epithelial Cell Proliferation. Caloric restriction reduced epithelial cell proliferation as expressed by the number of labeled cells per crypt column and the LI in the HF and LF groups of rats at all time points (10, 21, 34 weeks). Generally, this was seen in both treated and control rats (Table 3; Figs. 1 and 2). Crypt height was not consistently altered by caloric restriction.

The HF diet was associated with decreased proliferation (labeled cell number and LI) in the distal colon and increased proliferation (labeled cell number) and hyperplasia in the proximal colon as compared to the LF diet at 34 weeks (Table 3). At the earlier time points distal colonic proliferation measurements were similar in the LF and HF diets. The HF diet widened the crypt proliferative zone in the proximal colon but not in the distal colon at 34 weeks (Fig. 2). In the proximal colon the majority of labeled cells were found in the midcrypt (compartment 3) in the LF group but the proliferative zone shifted towards the second and first compartments in the HF group. AOM-treated animals had more labeled cells per crypt column and a higher LI than control rats at 21 but not at 10 weeks (Table 3). In rats bearing a colonic carcinoma or adenoma, no differences were found in proliferative indices compared to similar non-tumor-bearing rats.

Caloric restriction significantly reduced proliferative indices in biopsy specimens incubated with \(^{3}H\)dThd in vitro, as well as in autopsy specimens after \(^{3}H\)dThd in vivo. Less variation between individual rats was found in the autopsy specimens, probably because histological definition was superior. In biopsies taken at 20 weeks, specimens from only 3-4 rats/group were processed, confirming changes seen with in vivo labeling, but statistical significance was not reached in all groups because of small sample numbers.

---

* We thank Olympus Corp. of Woodbury, NY, for the gift of a pediatric bronchoscope to perform this work.
## Table 3

<table>
<thead>
<tr>
<th></th>
<th>LF AL</th>
<th>LF CR</th>
<th>P</th>
<th>HF AL</th>
<th>HF CR</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>34-wk autopsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOM-treated distal colon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI (%)</td>
<td>9.1 ± 0.9&lt;sup&gt;a&lt;/sup&gt;</td>
<td>3.9 ± 0.2</td>
<td>&lt;0.001</td>
<td>6.0 ± 1&lt;sup&gt;b&lt;/sup&gt;</td>
<td>3.0 ± 0.2&lt;sup&gt;b&lt;/sup&gt;</td>
<td>&lt;0.005</td>
</tr>
<tr>
<td>Cells (no.)</td>
<td>37.4 ± 1.2</td>
<td>33.4 ± 0.7</td>
<td>&lt;0.05</td>
<td>36.2 ± 1.0</td>
<td>35.9 ± 0.6&lt;sup&gt;b&lt;/sup&gt;</td>
<td>0.24</td>
</tr>
<tr>
<td>Labeled cells (no.)</td>
<td>3.4 ± 0.4</td>
<td>1.3 ± 0.1</td>
<td>&lt;0.001</td>
<td>2.1 ± 0.2&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1.1 ± 0.1</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>AOM-treated proximal colon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI (%)</td>
<td>6.0 ± 0.6</td>
<td>4.0 ± 0.6</td>
<td>&lt;0.05</td>
<td>6.9 ± 0.4</td>
<td>4.0 ± 0.5</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>Cells (no.)</td>
<td>23.4 ± 0.59</td>
<td>22.5 ± 0.8</td>
<td>0.85</td>
<td>29.4 ± 2.4&lt;sup&gt;b&lt;/sup&gt;</td>
<td>22.6 ± 0.9</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>Labeled cells (no.)</td>
<td>1.4 ± 0.12</td>
<td>0.9 ± 0.2</td>
<td>&lt;0.05</td>
<td>2.1 ± 0.2&lt;sup&gt;b&lt;/sup&gt;</td>
<td>0.9 ± 0.1</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>21-wk autopsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline-treated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI (%)</td>
<td>3.3 ± 0.4</td>
<td>1.6 ± 0.4</td>
<td>&lt;0.05</td>
<td>3.0 ± 0.6</td>
<td>1.8 ± 0.2</td>
<td>0.14</td>
</tr>
<tr>
<td>Cells (no.)</td>
<td>32.2 ± 0.4</td>
<td>33.8 ± 0.4</td>
<td>0.05</td>
<td>33.1 ± 1.4</td>
<td>34.6 ± 0.3</td>
<td>0.37</td>
</tr>
<tr>
<td>Labeled cells (no.)</td>
<td>1.1 ± 0.1</td>
<td>0.5 ± 0.1</td>
<td>0.05</td>
<td>1.0 ± 0.2</td>
<td>0.6 ± 0.1</td>
<td>0.14</td>
</tr>
<tr>
<td>AOM-treated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI (%)</td>
<td>7.5 ± 0.9&lt;sup&gt;c&lt;/sup&gt;</td>
<td>3.2 ± 0.2&lt;sup&gt;c&lt;/sup&gt;</td>
<td>&lt;0.05</td>
<td>7.9 ± 1.0&lt;sup&gt;c&lt;/sup&gt;</td>
<td>3.4 ± 3&lt;sup&gt;c&lt;/sup&gt;</td>
<td>&lt;0.06</td>
</tr>
<tr>
<td>Cells (no.)</td>
<td>32.2 ± 0.9</td>
<td>37.4 ± 2.0</td>
<td>&lt;0.05</td>
<td>32.9 ± 1.4</td>
<td>36.0 ± 0.4&lt;sup&gt;c&lt;/sup&gt;</td>
<td>0.11</td>
</tr>
<tr>
<td>Labeled cells (no.)</td>
<td>2.4 ± 0.2&lt;sup&gt;c&lt;/sup&gt;</td>
<td>1.2 ± 0.0&lt;sup&gt;b&lt;/sup&gt;</td>
<td>&lt;0.05</td>
<td>2.6 ± 0.3&lt;sup&gt;c&lt;/sup&gt;</td>
<td>1.2 ± 0.1&lt;sup&gt;c&lt;/sup&gt;</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>10-wk biopsies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline-treated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI (%)</td>
<td>7.1 ± 0.2</td>
<td>5.4 ± 0.9</td>
<td>0.08</td>
<td>7.9 ± 0.7</td>
<td>4.8 ± 0.4</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>Cells (no.)</td>
<td>30.7 ± 0.7</td>
<td>30.4 ± 1.2</td>
<td>0.77</td>
<td>29.9 ± 1.2</td>
<td>29.5 ± 1.0</td>
<td>0.80</td>
</tr>
<tr>
<td>Labeled cells (no.)</td>
<td>2.2 ± 0.1</td>
<td>1.7 ± 0.3</td>
<td>0.12</td>
<td>2.4 ± 0.3</td>
<td>1.4 ± 0.1</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>AOM-treated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI (%)</td>
<td>8.3 ± 0.7</td>
<td>5.5 ± 0.8</td>
<td>&lt;0.05</td>
<td>8.9 ± 0.7</td>
<td>5.5 ± 0.6</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>Cells (no.)</td>
<td>33.8 ± 1.1&lt;sup&gt;c&lt;/sup&gt;</td>
<td>32.3 ± 1.6</td>
<td>0.45</td>
<td>30.4 ± 0.1&lt;sup&gt;b&lt;/sup&gt;</td>
<td>30.0 ± 1.0</td>
<td>0.77</td>
</tr>
<tr>
<td>Labeled cells (no.)</td>
<td>2.8 ± 0.2&lt;sup&gt;c&lt;/sup&gt;</td>
<td>1.2 ± 0.3</td>
<td>&lt;0.05</td>
<td>2.7 ± 0.3</td>
<td>1.65 ± 0.2</td>
<td>&lt;0.05</td>
</tr>
</tbody>
</table>

<sup>a</sup> Mean ± SE.

<sup>b</sup> Significantly different from its respective LF group, P < 0.05.

<sup>c</sup> Significantly different from its respective saline control group, P < 0.05.

## DISCUSSION

Caloric restriction repeatedly has been shown to inhibit tumor formation in experimental animal models. In the present study, caloric restriction to 70 and 80% of AL intake resulted in significant reduction in indices of colonic epithelial cell proliferation as measured by [<sup>3</sup>H]-dThd incorporation into DNA in normal-appearing mucosa. The effect was seen as early as 10 and 20 weeks of caloric restriction and persisted at 34 weeks. The LI was lowered by caloric restriction both in the carcinogen-treated and in the control rats. Tumor incidence measured at 34 weeks was also reduced (15). Thus, caloric restriction...
in rats is effective in favorably modulating an intermediate biomarker of colon cancer risk in a direction previously associated with lower risk of neoplasia (18).

It is generally held that excessive proliferation is positively associated with tumor risk and that reduction in cell proliferation favorably reduces this risk. The present study supports this theory, since at 34 weeks after carcinogen administration, colonic cell proliferation indices were reduced in parallel with lower tumor incidence. Furthermore, the effect of caloric restriction on proliferation occurred independently of carcinogen treatment and of the presence of tumors, and the effect preceded the appearance of tumors in carcinogen-treated rats. These data imply that reduction in cell proliferation by caloric restriction independently and favorably alters tumor risk in this experimental model.

In contrast, the effect of fat on tumor yield was dissociated from effects on cell kinetics in the distal colon. At 34 weeks tumor incidence was greater in HF AL-fed animals as compared to LF AL-fed animals, but colonic crypt LI and labeled cell number were lower in HF AL animals. At the earlier time points of 10 and 21 weeks, however, the HF diet had no effect on indices of colonic cell proliferation in the distal colon. Thus, distal colonic proliferation did not appear to be a reliable indicator of tumor risk induced by a HF diet. This is in contrast to findings in the proximal colon where some hyperplasia and an increase in labeled cell number in response to HF was noted at 34 weeks. There have been conflicting previous findings regarding the effect of HF diet on colonic cell proliferation (19, 20) in rodents, and this needs to be further investigated. Similarly, the chronic effects of high and LF diets in humans, and the possible different effects of such experimental interventions on the proximal and distal colon also remain to be studied.

The relative contributions of fat and of caloric intake to colon cancer risk is an important and unresolved health issue. In this model of colonic carcinogenesis in the rat, fat and caloric intake appear to act independently of each other. The role of fat in tumor promotion independent of its caloric load is supported by observations showing that rats fed a HF diet develop more tumors than rats fed an isocaloric LF diet (15, 26). Caloric intake also appears to be an independent positive modulator of tumor incidence and proliferation, since when fat intake is low and is not a promoting factor, reduction in caloric intake still reduces tumor yield and cell proliferation. The present study demonstrates that caloric and fat intake have differing effects upon colonic proliferation, suggesting that they affect colon carcinogenesis by different mechanisms.

Several epidemiological studies have suggested a positive correlation of colon cancer risk with body mass index or body weight (5, 27, 28). This correlation is difficult to analyze in carcinogenic restriction experiments since caloric restriction decreases tumor yield and body weight simultaneously. In the present study, both dietary fat and total caloric intake influenced tumor incidence and/or cell proliferation indices but body weight and composition, the end points of metabolic balance, did not consistently correlate with tumor yield or proliferation measurements. It remains unclear which aspects of energy balance, other than caloric intake, influence carcinogenesis. Studies which focus on measurements of energy expenditure and storage are needed.

The divergent effects of calories and fat on colonic cell proliferation point out that when colonic cell kinetics are measured these must be interpreted as part of a complex of interrelated factors affecting carcinogenesis. Not only the proliferation rate or LI but also the distribution of label and the location in the colon where changes take place need to be considered. In addition, it is important to study the proliferative response to particular interventions in animal models in relation to other end points in carcinogenesis before interpreting corresponding human data. Based on the present study, proliferation data appear to be valuable end points in human studies on the effect of caloric balance. However, the separate effects of fat and other dietary determinants could confound the results and need to be considered.

REFERENCES

15. Kumar, S. P., Roy, S. J., Tokumo, K., and Reddy, B. S. Effect of different levels of
Effects of Caloric Restriction and Dietary Fat on Epithelial Cell Proliferation in Rat Colon

Gideon Steinbach, Siva P. Kumar, Bandaru S. Reddy, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/53/12/2745

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.