Autocrine Regulation of Prostate-specific Antigen Gene Expression in a Human Prostatic Cancer (LNCaP) Subline

Jer-Tsong Hsieh, Hsi-Chin Wu, Martin E. Gleave, Andrew C. von Eschenbach, and Leland W. K. Chung

Department of Urology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 [J.-T. H., M. E. G., A. C. von E., L. W. K. C.]; and Department of Urology, Vancouver General Hospital, Vancouver, British Columbia, Canada V5Z 1S5, and Division of Urology, Taichung Veteran General Hospital, Taichung, Taiwan [H.-C. W.]

ABSTRACT

Prostate-specific antigen (PSA), a Mr 34,000 serine protease, is recognized as a useful marker for the detection and prognosis of patients with prostate cancer. Although serum PSA is an excellent prognostic indicator, an increasing number of factors were found to regulate the PSA expression of prostatic cancer cells, which include androgenic steroids, the growth factors (GFs) and the extracellular matrix. The purpose of this study is to define a novel protein factor that may be responsible for regulating PSA expression by androgen-independent (AI) human prostate cancer cells. We have established a LNCaP subline (C4) from a parental LNCaP tumor grown in a castrated host. The C4 subline overexpressed PSA mRNA and protein. Serum-free conditioned medium (CM) isolated from the C4 subline is able to stimulate PSA gene expression in parental LNCaP cells in a concentration-dependent manner. This autocrine PSA-inducing activity was found to be organ specific because CMs from other fibroblast cell lines (such as bone, prostate, kidney, and lung fibroblasts) and the CMs from several prostatic carcinoma cell lines (such as parental LNCaP, PC-3, DU-145) and a bladder transitional carcinoma cell line (WH) fail to exhibit similar activity. The activity of the CM from the C4 subline cannot be substituted by GFs such as TGF-α, TGF-β, bFGF, HGF, KGF, or NGF; neuroepitide (bombesin/GRP); secondary messenger analogue (diubutyryl cAMP); β2-adrenergic agonist (isoproterenol); or α1-adrenergic agonist (phenylephrine), indicating that the factor(s) may be a novel prostate-specific autocrine factor (PSAF). Both androgen and PSAF exhibit an additive effect on up-regulating PSA gene expression, suggesting that the signal transduction pathway elicited by PSAF may differ from that mediated by the androgen receptor. Further characterization of PSAF by heat, acid, and trypsin digestion revealed that the PSAF may be a protein factor with a unique amino acid composition. These observations suggest that a novel autocrine pathway mediated by PSAF may be responsible for the overexpression of PSA mRNA and protein in a human prostatic cancer cell line. The potential clinical significance of this factor will be discussed.

INTRODUCTION

PSA, produced exclusively by prostate epithelium, is a Mr 34,000 serine protease with chymotrypsin-, trypsin-, and esterase-like activities (1, 2). Because of its organ specificity, PSA has been used extensively as a serum marker for diagnosis and prognosis of prostate cancer and an immunohistochemical marker for the identification of prostatic tissues and cells in the pathological specimens. Several studies (3–9) indicated that PSA is not only expressed by normal but also by benign and malignant prostatic epithelial cells. More than 99% of metastatic prostatic lesions were found to stain positively for PSA; however, serum PSA appears to be most useful in staging disease and in monitoring patients after definitive therapy. Kuriyama et al. (10) and Killian et al. (11) demonstrated that serum PSA levels can be a useful marker for predicting the survival of patients who have stage D prostate cancer and who receive hormonal therapy. More recently, Stamey et al. (12) and Ercole et al. (13) evaluated the effect of androgen ablation therapy on serum PSA concentration in patients with previously untreated, stage D prostate cancer and have reached the same conclusion that patients in clinical remission after androgen ablation therapy can be identified by the low serum PSA levels, whereas patients with progressive disease after hormonal therapy will have markedly elevated serum PSA levels. These findings suggest that androgen deprivation therapy may have a direct impact on serum PSA concentration, and rebound of serum PSA levels during androgen deprivation may be due to a non-androgen factor(s)-mediated pathway. The implication of these observations will become clearer as detailed studies on PSA regulation become available.

To understand PSA regulation, a full-length cDNA clone (~1.9 kilobases) was sequenced (14, 15); sequence analysis (15, 16) revealed that PSA cDNA shares 82% homology with human glandular kallikrein cDNA (hGK-1). Further genomic DNA cloning indicated that these two genes localize at the same chromosome (i.e., 19q13) and that these two genes align in a head-to-tail orientation at a distance of only 12 kilobases (15, 17, 18). Several groups (19–23), including our laboratory, have shown that androgen is a strong inducer for the increase in the steady-state levels of PSA mRNA. Gleave et al. (24) recently suggested that several GFs may be involved in the PSA gene regulation. Obviously, PSA gene regulation warrants more intensive investigation in order to have a better understanding of the role of PSA in clinical application.

In this study, we defined and partially characterized a novel non-androgen factor, PSAF, in up-regulating PSA expression by LNCaP subline derived from a LNCaP tumor maintained in a castrated host. Our data suggest that this factor may be produced by human prostatic cancer cells as they progressed from AD to AI status. Data from the characterization of PSAF indicate that this factor may be a unique prostate-specific protein factor, and its mechanism(s) of induction of PSA overexpression may differ from those mediated by androgen and known peptide GFs, as well as neurotransmitters. The possible clinical implications of this novel PSA regulatory pathway and its possible implication in AI prostate cancer patients will be discussed.

MATERIALS AND METHODS

Chemicals and Probes. RNAzol B was obtained from Biotex Laboratories, Inc. (Houston, TX). All restriction endonucleases, T4 polynucleotide kinase, and agarose were products of Bethesda Research Laboratories (Gaithersburg, MD). All radiolabeled nucleotides, Hyperfilm-MP, and random-primer labeling kit were purchased from Amersham Corp. (Chicago, IL). All of the peptide growth factors were obtained from Upstate Biotechnology, Inc. (Lake Placid, NY). Tandem-E PSA, an immunoenzymetric kit for the quantitative measurement of PSA levels, was purchased from Hybritech, Inc. (San Diego, CA). The pancreatic trypsin inhibitor was obtained from Worthington Biochemical Corp. (Freehold, NJ). The PSA probe, a full-length cDNA clone, was obtained from Dr. D. Tindall (Mayo Clinic, Rochester, MN). PSA and hGK-1 sequence-specific oligonucleotides (25) were obtained from Dr. J. Trapman.
Preparation of Conditioned Media from Cultured Cell Lines for the Induction of PSA Gene Expression. Conditioned media from various sources, as described previously (27), were collected and prepared by growing cells in 150-mm tissue culture dishes with T medium, 2% TCM (a serum-free defined media supplement; Celeco Co., Minnetonka, MN), and 2% fetal bovine serum until 60-70% confluent, washed with PBS, and changed to serum-free T medium containing 2% TCM. After 24 h, the CM was collected and filtered through a 0.2-μm filter and then dialyzed with a 3500 molecular weight cut-off dialysis membrane (Spectrum Medical Industries, Inc., Los Angeles, CA) for 96 h at 4°C against distilled water containing 0.01 mM phenylmethylsulfonyl fluoride; water was changed every 48 h. Samples were lyophilized and reconstituted to a 10-fold concentration with T medium, filtered, and diluted to the desired working concentration (0.1- to 2-fold) with T medium containing 2% TCM. The approximate protein concentration of the CM ranged from 0.91 to 1.3 mg/ml (control: T medium containing 2% TCM, 1.3 mg/ml) as determined by the Lowry method (28).

For an induction experiment, LNCaP cells (passage number ranging from 30 to 50) as indicator cells were cultured in 65-mm tissue culture dishes with T medium containing 2% TCM and 2% fetal bovine serum until 80% confluency was reached. These cells were washed with PBS twice and then the serum-free T medium containing 2% TCM; these cells reached the 100% confluence 48 h after starvation. Different sources of CMs were added into these indicator cells for another 48-h incubation under the same serum-free condition, and then total cellular RNA was prepared 48 h after treatment and subjected to Northern blot analysis.

High-Molecular-Weight DNA Extraction and Southern Blot Analysis. High-molecular-weight DNA was purified using the procedure described by Davis et al. (29). An equal amount of DNA was digested with restriction endonucleases overnight at 37°C and then fractionated by electrophoresis in a 0.8% agarose gel containing 0.5 μM TAN buffer (40 mM Tris-HCl, 18 mM NaCl, 20 mM sodium acetate, and 2 mM EDTA). After alkaline denaturation (30), DNA was transferred onto a Zetaprobe membrane (Bio-Rad, Richmond, CA). The membrane was baked at 2 h at 80°C, prehybridized in a hybridization buffer (10% dextran sulfate, 1% SDS, 1 mM NaCl, 20 μg/ml salmon sperm DNA) at 65°C, and then hybridized with 32P-labeled cDNA probe overnight at the same temperature. After hybridization, the membrane was washed in 2× SSC (1× SSC is 0.15 M NaCl, 15 mM sodium citrate) at room temperature for 20 min, and then the membrane was washed under high stringent conditions (0.5× SSC, 1% SDS) at 65°C for 5 min. Autoradiography was performed using Hyperfilm-MP with the intensifying screen at −80°C.

RNA Purification and Northern Blot Analysis. Total cellular RNAs were extracted from cells using the RNAzol B method, a single-step purification protocol described by Chomczynski and Sacchi (31). Equal amounts of RNAs were subjected to Northern blot analysis by electrophoresis on 0.8% agarose-2 M formaldehyde and then transferred onto a Zetaprobe membrane. Membranes were baked at 80°C for 2 h, prehybridized in a hybridization buffer (10% dextran sulfate, 1% SDS, 1 mM NaCl, 20 μg/ml salmon sperm DNA), and then hybridized with 32P-labeled cDNA probe overnight at the same temperature. After hybridization, the membrane was washed in 2× SSC (1× SSC is 0.15 M NaCl, 15 mM sodium citrate) at room temperature for 20 min, and then the membrane was washed under high stringent conditions (0.5× SSC, 1% SDS) at 65°C for 5 min. Autoradiography was performed using Hyperfilm-MP with the intensifying screen at −80°C.

RESULTS

Elevation of the Steady-State Levels of PSA mRNA in LNCaP Sublines. Data from our recent studies (27) indicate that serum PSA in a murine model of human prostate cancer is influenced by androgen, GFs, and certain intrinsic tumor properties which are affected by the length of time that tumors are maintained in castrated male hosts. Immunohistochemical staining of tumor tissues revealed a reduced PSA staining in LNCaP tumors from castrated hosts; but tissue PSA staining intensity increased when castrated hosts were treated with testosterone propionate or when tumors were maintained in castrated hosts for 3 to 4 weeks (21). Tissue PSA levels also correlated well with serum PSA levels (21). Data from Northern analysis (21) indicate that the steady-state levels of PSA mRNA decrease shortly after castration. However, the PSA mRNA levels rebound 2 weeks after castration, suggesting that overexpression of PSA mRNA and protein may be uncoupled from androgen control, a characteristic indicator of the progression of human prostate cancer toward its AI state. To define the deranged expression of PSA gene, we have derived LNCaP sublines from tumors maintained either in intact (such as M line) or castrated hosts (such as C4 from 4-week postcastration; C5 from 5-week postcastration). Using a SstI fragment isolated from PSA cDNA probes as described by Qiu et al. (32), the variable elevated levels of PSA mRNA were detected in several LNCaP sublines, including the M subline (Table 1). In Table 1, we also noted that the steady-state levels of PSA mRNA and protein do not correlate well in C5 cells, implying that the translational regulation of PSA gene in C5 cells may play a role in the increment of PSA secretion. However, the C4 subline exhibited the highest increment in PSA mRNA levels as compared to the parental LNCaP cells (Table 1; Fig. 1A). Also, levels of PSA protein secretion in the medium by the C4 subline were elevated accordingly (Table 1). Since PSA cDNA shares 82% sequence homology with hGK-1 cDNA (15, 16), it is crucial to rule out the possibility that most of the signal in the C4 subline detected by PSA cDNA probe reflects the PSA mRNA levels. Using both the PSA and hGK-1 sequence-specific oligonucleotide probes (Fig. 1B), the overexpression of PSA mRNA can be excluded from the human glandular kallikrein mRNA.

Analysis of PSA Gene in Both Parental LNCaP Cells and Their Sublines. To explore the possible molecular mechanism(s) associated with the overexpression of PSA mRNA in the C4 subline, we examined both the amplification and methylation status of PSA gene from different LNCaP sublines. Southern analysis data (Fig. 2A) indicated that HindIII digestion generates a single PSA gene fragment (i.e., 7.1 kilobases) as described previously by Riegman et al. (18). This band was detected in various LNCaP sublines and was retained at the same intensity. Furthermore, using several different restriction enzymes, no amplification of PSA gene can be found in the C4 subline in comparison to the PSA gene in the parental LNCaP cells (Fig. 2B). An overall DNA methylation pattern of PSA gene was determined using methylation-sensitive restriction enzymes such as HpaII and MspI. As shown in Fig. 2B, the DNA methylation pattern of the PSA gene in various LNCaP sublines remained unaltered. Furthermore, methylation pattern changes cannot be detected using other methylation-sensitive restriction enzymes such as HhaI (Cfo I), Smal, and XhoI (data not shown).

Induction of PSA Gene Expression in Parental LNCaP Cell by Conditioned Media from C4 Subline. As shown in Fig. 3A, an approximately 5- to 10-fold increase in the steady-state levels of PSA mRNA was detected in the parental LNCaP cells by incubating with a 2-fold concentrated CM from the C4 subline. The induction by C4 CM on PSA gene expression was found to be concentration dependent (Fig. 3A) and exhibits cell type specificity. For example, whereas the CM from the M line showed only marginal PSA-inducing activity and

| PSA protein secretion and mRNA expression by parental LNCaP cells and its sublines |
|-------------------------------|------------------------|-----------------|
| **LNCaP cells** | **PSA secreted into the medium** (ng/10⁶ cells) | **Relative levels** of PSA mRNA* |
| Parental | 1.005 ± 0.028 | 1.0 |
| M | 2.970 ± 0.078 | 2.5 |
| C4 | 4.626 ± 0.416 | 5.0 |
| C5 | 4.139 ± 0.189 | 2.0 |

* PSA levels were determined by the TANDEM-E method from Hybritech, Inc.

** PSA mRNA level in the parental LNCaP cell line is defined as 1.0, based on the densitometrical quantification data.

2853
the variable levels of PSA mRNA induction may be due to experimental variation (Fig. 3A), the CM from the parental LNCaP cells was totally inactive (Fig. 6). CMs prepared from other prostate cancer cell lines (such as PC-3 and DU-145) and a human bladder transitional carcinoma cell line such as WH cell line failed to exhibit similar PSA-inducing activity (data not shown). Unlike the increase in PSA mRNA levels, the expression of other androgen-regulated genes (such as ODC) was not affected by the CM from the LNCaP sublines (Fig. 3A), suggesting that the active component in the CM may be a unique factor(s) dissimilar from androgen. Previously, we have demonstrated that the CM from several fibroblast cell lines, including prostate (NbF-1 and rUGM), bone (MS), kidney (normal rat kidney), and lung (CCD16), fail to increase the steady-state levels of PSA mRNA. These data suggest that the expression of PSA by the LNCaP subline may be organ-specific and thus could possibly represent a unique factor secreted by AI tumor.

Effect of Hormone, GFs, Neuropeptides, α₁- and β₂-Adrenergic Agonists on PSA Gene Expression in Parental LNCaP and Its Subline. As shown in Fig. 4 (A and B), the addition of dihydrotestosterone is able to further increase steady-state levels of PSA mRNA (A) (B)

Fig. 2. Analysis of PSA gene in LNCaP cells and their sublines. High-molecular-weight DNAs were isolated from each subline of LNCaP as described above. Fifteen μg of total DNA were digested with either HindIII (A) or HpaI andMspI (B) and subjected to Southern analysis.

Fig. 3. The effect of PSA gene expression in parental LNCaP cells in the presence of CM from various sources. The parental LNCaP cells grown in the same conditions as in Fig. 1 were incubated with CM based on similar protein content (control cells were incubated with T medium containing 2% TCM and 2% fetal bovine serum). Forty-eight h after treatment, total cellular RNA was prepared and 20 μg of total cellular RNA were subjected to Northern analysis. A, protein content of CM is 1.3 mg/ml from M subline (1X) or is 1.0 mg/ml C4 subline (1X); B, protein content of CMs from each fibroblast line, ranging from 1.2 to 1.0 mg/ml. NRK, normal rat kidney fibroblastic cell line; rUGM, urogenital sinus mesenchymal cell line derived from fetal Noble rat; NbF-1, ventral prostate fibroblastic cell line derived from adult Noble rat; MS, human bone fibroblastic cell line derived from osteogenic sarcoma; CCD16, human lung fibroblastic cell line derived from normal adult; 3T3, embryonic mouse fibroblastic cell line (NIH-3T3). Note: the autoradiograph in B was exposed for a longer period than the one in A to determine if fibroblast CM stimulates PSA gene expression in parental LNCaP cells.
in both parental LNCaP and C4 subline cells. On the other hand, both C4 CM and dihydrotestosterone exhibited the additive effect on PSA mRNA induction in parental LNCaP cells (Fig. 4C). These data suggest that the mediators inducing PSA expression include androgen receptor and vitamin D receptor. To further examine the biochemical nature of the PSAF, we tested various known factors within the optimal concentration of growth stimulation for LNCaP and other cell types (27, 33–36). Results of these studies showed that no apparent increases in the steady-state levels of PSA mRNA can be detected in the parental LNCaP cells in the presence of GFs such as TGF-α, TGF-β, bFGF, NGF, HGF, and KGF (data not shown); neuropeptides (bombesin/GRP); second messenger analogue (dibutyryl cAMP); α₁-adrenergic agonist (phenylephrine); and β₂-adrenergic agonist (isoproterenol) (Fig. 5, A and B). These data suggest that the nature of PSAF may differ from that of these known GFs and neurotransmitters and that the induction may not be elicited through signal transduction pathways mediated by androgen receptor, protein kinase C, or protein kinase A.

Partial Characterization of the PSAF from CM of the C4 Subline. To characterize the action of PSAF on up-regulating PSA mRNA, parental LNCaP cells were incubated with 2-fold concentrated CM from the C4 subline for various periods. The CM was removed at the end of the incubation period, and the cells were changed to serum-free medium and assayed at 48 h posttreatment. Northern blot analysis of PSA mRNA revealed that a short-term exposure (1 h) of C4 CM to parental LNCaP cells is sufficient to elicit the signal(s) to increase the steady-state levels of PSA mRNA when determined at 48 h (Fig. 6A). The active PSA-inducing factor was tested by standard biochemical methods as shown in Fig. 6B. PSAF is sensitive to heat and acid treatment but resistant to trypsin digestion. Furthermore, the majority of PSAF activity is still retained in 60–80% of the ammonium sulfate fraction (Fig. 6C). This result suggests that PSAF must be a protein factor that resists protease digestion because of its unique amino acid composition.

DISCUSSION

Serum PSA is regarded as a useful marker for the diagnosis and prognosis of men with prostate cancer (37). Elevation of serum PSA was found in prostate cancer and benign prostate hyperplasia patients but not in prostate cancer patients who are undergoing prolonged remission and not in healthy men or women or patients with nonprostatic malignancies (37). Until recently, clinical data have indicated that serum PSA levels roughly correlate with tumor volume and stage of the prostate cancer (11–13, 37–39), suggesting that PSA may be the most useful prostate-specific marker available for the monitoring of prostate cancer progression and its therapeutic responsiveness. Although the clinical importance of PSA in monitoring prostate cancer progression is undisputed, wide variations exist in many patients with either localized or metastatic disease (12, 13, 37, 39). Evidence suggesting that factors other than androgen may be involved in the regulation of PSA includes the following: (a) Serum PSA levels in Stage D prostate cancer patients with bony metastasis are estimated to be higher than those found in other stages (37), which may be due to the higher tumor volume. In contrast, patients have elevated PSA levels with small tumor volume, which implies that factor(s) in the bone marrow may induce PSA expression by human prostate cancer cells. These results imply that factor(s) in the bone marrow may induce PSA expression by human prostate cancer cells. (b) Serum PSA levels rebound in castrated men with prostate cancer (11–13, 37) and in the mouse model of human prostate cancer (24). These observations are consistent with the suggestion that nontesticular factor(s) may play a role in regulating PSA expression by human prostatic cancer cells. These results suggest that nonandrogenic tissue factor(s) may regulate PSA expression by developing human prostatic epithelial cells. (c) In both cultured primary human prostatic epithelial cells (40) and LNCaP cells (19-24), androgen, GFs, and extracellular ma-

![Fig. 4. The additive effect of PSAF and androgen on PSA gene expression in LNCaP sublines. Various concentrations of dihydrotestosterone were added to either the parental LNCaP (A) or C4 subline or the parental LNCaP cells in the presence of C4 CM (1X, 1.0 mg/ml protein) (C) grown in serum-free T medium containing 2% TCM. Twenty-four h after treatment, total cellular RNA was prepared and 20 μg of total cellular RNA were subjected to Northern analysis. DHT, dihydrotestosterone. Relative PSA mRNA levels were determined by densitometrical quantification, and the control is defined as 1.0; A, DHT 0.1 (0.34), DHT 1.0 (0.56), DHT 10.0 (4.54); B, DHT 0.1 (1.23), DHT 1.0 (1.54), DHT 10.0 (1.12); C, DHT 0.01 (1.33), DHT 0.1 (2.71), DHT 1.0 (3.24), C4 CM (4.76), C4 CM + DHT 0.01 (5.81), C4 CM + DHT 0.1 (7.59), C4 CM + DHT 1.0 (6.89). GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

![Fig. 5. The effect of PSA gene expression in parental LNCaP cells treated with varieties of GFs, neuropeptide, α₁ and β₂-adrenergic agonists. The parental LNCaP cells grown in the same condition as Fig. 3 were incubated varieties of agents as indicated (control cells were incubated with T medium containing 2% TCM). Forty-eight h after treatment, total cellular RNA was prepared and 20 μg of total cellular RNA were subjected to Northern analysis. B, I, bombesin; II, isoproterenol; III, dibutyryl cAMP; IV, phenylephrine. Relative PSA mRNA levels were determined by densitometrical quantification, and the control is defined as 1.0; A, TGF-α 100 (0.98), TGF-α 10 (1.01), TGF-α 1 (1.15), bFGF 100 (1.22), bFGF 10 (1.04), bFGF 1 (0.97), TGF-β 0.01 (0.72), TGF-β 0.1 (0.84), TGF-β 1 (0.53), NGF 1 (1.13), NGF 100 (1.08); B, bombesin 100 (0.62), bombesin 10 (0.89), isoproterenol 100 (0.51), isoproterenol 10 (1.11), isoproterenol 1 (1.07), dibutyryl cAMP 0.01 (1.09), dibutyryl cAMP 0.1 (1.11), dibutyryl cAMP 1.0 (1.23), phenylephrine 1 (1.10), phenylephrine 10 (1.08), phenylephrine 100 (1.14).]
We thank Dr. J. Trapman for providing the oligonucleotide probe for both PSA and hGK-1 gene, C. Davis for preparing the manuscript, and D. Evans for the excellent editorial assistance.

REFERENCES

15. Riegelman, P. H. L., Vliestra, R. J., van der Korput, J. A. G. M., Romijn, J. C., and Trapman, J. Characterization of the prostate-specific antigen gene: a novel human exhibit organs specificit (Fig. 3B); this effect is specific, as illustrated by the fact that PSAF failed to up-regulate other androgen-stimulated genes such as ODC (Fig. 3A). Because both androgen and PSAF have additive effects on PSA gene expression (Fig. 4), it is possible that the signal transducing pathway elicited by PSAF may not require the presence of androgen receptor. PSAF-induced PSA gene expression cannot be replaced by the several known GFs, second messenger analogue, and neurotransmitters tested (Fig. 5). We suggest that the peptide composition of PSAF may be unique because it is resistant to trypsinization (Fig. 6, B and C). Furthermore, the interaction between PSAF and its putative receptor may occur rapidly and may result in the amplification of the cascade signal(s), which has persisted for at least 48 h (Fig. 6A). Our results support the hypothesis that PSAF may elicit a novel signal transducing pathway, not yet having been identified, leading to the increment in PSA gene expression. Detailed molecular investigation could provide insight into PSA gene regulation.

In summary, we identified the presence of PSAF, which is capable of up-regulating PSA mRNA and protein in an AI LNCaP subline in vitro. We partially characterized the biochemical characteristics of this factor and its mode of action in stimulating PSA expression by the LNCaP cells in culture. The possible role(s) of PSAF in the clinical progression of AD prostate cancer and in the maintenance of AI prostate cancer growth is under investigation.

Autocrine Regulation of Prostate-specific Antigen Gene Expression in a Human Prostatic Cancer (LNCaP) Subline

Jer-Tsong Hsieh, Hsi-Chin Wu, Martin E. Gleave, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/53/12/2852

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.