Boron Neutron Capture Therapy of Intracerebral Melanoma Using Boronophenylalanine as a Capture Agent

Khalid Z. Matalka,2 Michael Q. Bailey, Rolf F. Barth,9 Alfred E. Staubus, Albert H. Soloway, Melvin L. Moescher, Jeffrey A. Codere, and Einar K. Rofstad

Departments of Pathology [K. Z. M., R. F. B.], Veterinary Clinical Sciences [M. Q. B.], and Preventive Medicine [M. L. M.] and the College of Pharmacy [A. E. S., A. H. S.], The Ohio State University, Columbus, Ohio, 43210; Medical Department [J. A. C.], Brookhaven National Laboratory, Upton, Long Island, New York, 11793; and The Norwegian Radium Hospital [E. K. R.], Oslo, Norway

ABSTRACT

A rat brain tumor model has been developed utilizing nude rats and the human melanoma cell line MRA 27. For pharmacokinetic and tissue distribution studies, 2 105 MRA 27 cells were implanted intracerebrally (i.c.), and 30 days later, 120 mg of 10B-enriched l-boronophenylalanine were injected i.p. into nude rats. 10B concentrations in the tumor, blood, and normal brain were 23.7, 9.4, and 8.4 mg/g, respectively, 6 h following administration. For therapy experiments, tumor bearing rats were irradiated at the Brookhaven Medical Research Reactor 30 days following implantation. The median survival time was 44 days for untreated rats, 76 days for those receiving a physical dose of 2.7 Gy, and 93 days for those receiving 3.6 Gy. Animals receiving both 10B-l-boronophenylalanine and physical doses of 1.8, 2.7, or 3.6 Gy (total tumor physical doses of 5.0, 7.5, or 10.1 Gy) had median survival times of 178, 182, and 262 days, respectively. Forty % of rats that received the highest tumor dose (10.1 Gy) survived >300 days. In a replicate experiment 21% of animals that had received l-boronophenylalanine and irradiation (total tumor physical dose of 10.1 Gy) were alive 220 days after therapy. In a parallel study, animals that were irradiated with Y photons from a 137Cs source with 12 Gy or 2.0 Gy 9 delivered to the head had median survival times of 86 and 79 days, respectively, compared to 47 days for untreated animals. Our results indicate that boron neutron capture therapy is effective against i.c. melanoma in a rodent model and suggest that large animal studies are warranted to further assess its efficacy.

INTRODUCTION

Malignant melanoma can metastasize to almost any organ of the body, but especially to the skin, liver, lung, and brain (1, 2). Patients with brain metastases have a very poor prognosis despite aggressive chemotherapy and radiotherapy (3, 4). In one series of 125 patients, the median survival times of patients with cerebral metastases were 9 weeks when treated with a radiation dose of 30–40 Gy to the whole brain and 26 weeks when patients had surgical excision of solitary lesions, compared to 3 weeks if they were not treated (4). Immuno-therapy using interleukin 2 and low doses of cyclophosphamide or radiation effects to normal brain due to low uptake of 10B by normal tissues but result in a significant tumoricidal effect due to selective accumulation of 10B by neoplastic cells.

MATERIALS AND METHODS

Animals and Tumor Cell Line. The human melanoma cell line MRA 27 was derived from a 60-year-old Norwegian male and has been propagated both in vitro and in vivo in nude mice and rats. MRA 27 cells were grown in McCoy’s 5A medium (GIBCO, Grand Island, NY). Six to 8-week-old athymic female nude rats of NIH-nu strain were purchased from the Animal Production Branch, National Cancer Institute, Frederick, MD. The rats were maintained under specific pathogen free conditions and fed sterilized food and water.

Implantation. A stereotactic implantation procedure, previously used by us for studies on BNCT of a rat glioma (16), has been implemented. Briefly, nude rats were sedated i.p. with a 1:2 mixture of 120 mg/kg of ketamine/20 mg/kg of xylazine and a plastic screw was embedded in the skull. MRA 27 cells were injected through a central hole in the plastic screw into the right caudate nucleus at a concentration of 106 or 2 × 106/10 µl of serum free McCoy’s 5A medium containing 1% agarose with a gelling temperature of <30°C. The screw hole was filled with bone wax following withdrawal of the needle, and the operative field was flushed with betadine before closing the scalp incision with a single sterilized clip. The rats were weighed 3 times/week following neutron; BPA, boronophenylalanine; MW-M, megawatt-minute; PE, plating efficiency; RBE, relative biological effectiveness; MeST, median survival time(s); i.c., intracerebrally; n, neutrons; p, protons.
implantation and irradiation studies. The tumor volume was determined at the time of death from formalin fixed brains that had been cut coronally at 2-mm intervals. The tumor size index was defined as the cube root of the product of the largest measurements of the length, height, and width (16).

Pharmacokinetics and Tissue Distribution Studies. For injection, BPA (Callery Chemical Co., Callery, PA), as either the racemic αβ mixture or the purified ε enantiomer, was converted to a more soluble fructose complex. BPA and fructose were mixed in a 1:1 molar ratio to yield a final concentration of 120 mg of BPA/2 ml of water. The pH was adjusted to 8.8 with 6 N NaOH. Two ml of the complex were administered i.p. to rats 37 days following i.c. implantation of 10⁶ tumor cells, unless indicated otherwise. Animals were killed 1, 3, 6, 9, 12, and 18 h later and samples of blood, brain, tumor, skin, liver, kidneys, muscle, eyes, and skull were obtained. Boron concentrations were determined by means of direct current plasma atomic emission spectroscopy, as described in detail elsewhere (17).

In Vitro Cell Irradiations and Clonogenic Assays. In *in vitro* irradiations of MRA 27 cells were carried out at the Brookhaven Medical Research Reactor at 1 MW reactor power with an n₀ flux of 2.8 × 10¹¹ neutrons/cm² min. Prior to irradiation, cells were incubated for 24 h with BPA-fructose complex at a concentration of 10 μg ¹⁰B/ml of growth medium. As previously described (18), the same concentration of ¹⁰B was maintained in the medium during trypsinization, harvesting, and irradiation. The cells were irradiated at a density of 2 × 10⁶/ml at ambient temperature but were kept on ice during transportation until plated. Following irradiation, the cells were plated in boron free medium, plated into Petri dishes, and incubated at 37°C in a humidified atmosphere containing 5% CO₂. Fourteen days later the plates were washed with phosphate buffered saline, fixed with formaldehyde, and stained with 1% crystal violet. Colonies ≥50 cells (0.3-mm) were enumerated visually or by means of an Artex 880 image analyzer (Artex System Co., Farmingdale, NY). The plating efficiency:

\[
PE = \frac{\text{Number of MRA 27 colonies enumerated}}{\text{Total number of MRA 27 cells plated}} \times 100\%
\]

ranged from 30 to 50%. The surviving fraction was determined from:

\[
\text{Number of colonies enumerated} / \text{Total number of MRA 27 cells plated} \times PE/100
\]

In Vivo Irradiation Studies. All irradiations were carried out at the Brookhaven Medical Research Reactor. The reactor power was maintained at 1.25 MW during the irradiation of all rats. BNCT was initiated 30 days following stereotactic implantation of 2 × 10⁶ MRA 27 cells. Rats were divided into 6 groups of 9 or 10 animals each. Groups 1 and 2 received 6 or 8 MW-minutes of irradiation, respectively. Groups 3–5 received 4, 6, or 8 MW-M of irradiation 6 h following i.p. administration of 120 mg of 95% ¹⁰B-enriched B.P.A. Group 6 served as untreated controls. All rats were anesthetized with a 1:2:1 mixture of ketamine/xylazine and placed supine in a body shield-head stabilizer, as described elsewhere (13, 19, 20). The tumor implantation site was centered in the 1.15-cm diameter aperture of the neutron beam collimator. The adjustment of the head of the rat was established using a marked lucite plate as a template for the collimated beam. The adjustment of the head of the rat was established using a marked lucite plate as a template for the collimated beam.

RESULTS

Pharmacokinetics and Tissue Distribution Studies. In vivo and in vitro BNCT includes n₀ and fast neutrons (10,000 eV), γ photons, and heavy particles that are generated from ¹⁴N(n,p)¹⁴C and ¹⁰B(n,α)⁷Li reactions. As previously described (13, 18, 20), n₀ fluxes measured were used to estimate boron concentrations in the brain of a dead rat to a depth of 4.5 mm below the skull surface, or alternatively the wires were placed inside 1.5 ml Eppendorf microfuge tubes for in vitro irradiations. The n₀ flux at a depth of 4–5 mm below the skull was 3.9 × 10¹¹ neutrons/cm² min (±5%) and 2.8 × 10¹¹ neutrons/cm² min (±5%) for in *in vitro* irradiations at 1 MW power. The dose contributions from the ¹⁰B(n,α)⁷Li and ¹⁴N(n,p)¹⁴C reactions were calculated using data from the measured n₀ flux, assuming uniform boron distribution and a nitrogen content of 2.6% in vivo and 1.5% in *in vitro* (13, 18, 20, 21). The γ photon and fast neutron components were measured using tissue equivalent plastic chambers (A-150 plastic; Far West Technology, Goleta, CA) with TE gas (Rossi gas) and graphite chambers filled with CO₂. The dosimetry of each component for both *in vitro* and *in vivo* irradiations are summarized in Table 1.

The extrinsic γ photons and fast neutron doses were measured by using paired tissue equivalent plastic chambers (A-150 plastic) with TE gas (Rossi gas) and graphite chambers filled with CO₂. The dose rates for each component are tabulated in Table 1. The γ photon dose rate for ¹³C was measured by means of an exposure rate meter model 192X (Capintec, Montvale, NJ) with a 0.6-ml Farmer replacement ionization chamber (PR-063).

Statistical Analysis. The Wilcoxon-Gehan rank sum two sample test was applied to the survival data to test for significant differences between the treated groups and controls. All censored rats were ranked equally.

Table 1 Dose rates for in vivo and in vitro irradiations at the Brookhaven Medical Research Reactor

<table>
<thead>
<tr>
<th>Component</th>
<th>Gy/min</th>
<th>Gy/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹⁴N(n,p)¹⁴C</td>
<td>0.076</td>
<td>0.031</td>
</tr>
<tr>
<td>Fast neutrons</td>
<td>0.27</td>
<td>0.13</td>
</tr>
<tr>
<td>γ photons</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>¹⁰B(n,α)⁷Li (per μg ¹⁰B/g)</td>
<td>0.034</td>
<td>0.024</td>
</tr>
</tbody>
</table>

* Power level, 1 MW; thermal neutron flux, 3.9 × 10¹¹ neutrons/cm² min at depth of 4–5 mm beneath the skull surface and 2.8 × 10¹¹ neutrons/cm² min inside the microfuge tubes.
A remarkable drop in the dose required to decrease the surviving fraction of MRA 27 cells was observed when irradiated with 10 B/ml (10B-BPA). The PE for MRA 27 cells did not change when preincubated with IOB-BPA. When 10 fig/ml of 10B (IOB-BPA) were present at ambient conditions during cell irradiations, a linear energy transfer of the 10B(n,a)7Li reaction. Furthermore, no emissions in the left and right cerebral hemispheres were 20 and 21 /xg/g, respectively. When the same amount of L-BPA was administered i.p. under similar conditions, the tumor boron concentration increased to 24.9 /xg/g (Table 2). The tumor to blood boron concentration and tumor to normal brain boron concentration ratios were 2.4 and 2.5, respectively. When the tumor to normal brain boron concentration ratios were 2.4 and 2.5, respectively. When the tumor to normal brain boron concentration ratios were 2.4 and 2.5, respectively.

In order to evaluate the propensity of BPA to accumulate in multicentric i.e. melanomas, 5 X 10^4 MRA 27 cells were implanted into the right and left caudate nuclei of nude rats and 30 days later they were injected i.p. with 120 mg of boron complex. In nude rats carrying 37-day-old i.e. MRA 27 human melanoma tumors, Points, (±SE) of four rats.

Another BNCT experiment was initiated 23 days following stereotactic implantation of 2 X 10^5 MRA 27 cells. The untreated controls (n = 10) had a MeST of 37 and 66 days for those (n = 15) receiving irradiation dose (no BPA) of 3.6 Gy or 6.4 Gy-Eq (8 MW-M). The enhanced survival of the BNCT treated rats was statistically significant compared to untreated (P ≤ 0.006) and the irradiated control group (P ≤ 0.004). The younger age and lower body weight at the initiation of the experiment may provide a possible explanation for lower MeST of both the untreated and irradiated groups in the second compared to the first experiment (Fig. 3; Table 4). The weight factor of the rats from group 5 (BPA + 8 MW-M) were still alive and appeared to be in a good condition (Table 4).

Kaplan-Meier plots for BNCT treated animals and the irradiated controls are shown in Fig. 3. All untreated rats (group 6) died by 63 days following implantation and had a tumor size index of 8.0 ± 0.7. The MeST for group 6 was 44 days compared to 76 days for group 1 (6 MW-M) and 93 days for those animals in group 2 (8 MW-M). Animals from BNCT groups 3–5 had MeSTs of 170, 182, and 262 days, respectively. Ten months following tumor implantation, 40% of the rats from group 5 (BPA + 8 MW-M) were still alive and appeared to be in a good condition (Table 4). The prolongation of survival times for all irradiated rats (groups 1–5) compared to untreated rats (group 6) were highly significant (P ≤ 0.04–0.0006). The percentages of survival at 100, 150, and 200 days for BNCT treated rats (groups 3–5) were 70–80%, 50–70%, and 20–60% compared to 33–35%, 22–30%, and 22–30%, respectively, for the irradiated controls (groups 1 and 2). These percentages of survival were significantly different at 100 and 150 days (0.05 ≥ P ≥ 0.005) with the exception of group 3 (BPA + 4 MW-M), which was not significant at 150 days.

In Vitro Survival Studies. The cell survival curves of MRA 27 following irradiation with 250 kVp x-rays or at Brookhaven Medical Research Reactor are shown in Fig. 2. The dose response curve for 250 kVp x-rays clearly demonstrates a shoulder, whereas none was seen following reactor irradiation alone or in the presence of 10 /xg 10B/ml (10B-BPA). The PE for MRA 27 cells did not change when they were preincubated with 10B-BPA. When 10 /xg/ml of 10B (10B-BPA) were present at ambient conditions during cell irradiations, a remarkable drop in the dose required to decrease the surviving fraction to 37% (estimated from the final slope, 0.66 to 0.14 Gy) was observed (Fig. 2). This reduction was attributed primarily to the high linear energy transfer of the 10B(n,a)7Li reaction. Furthermore, no change in the survival of MRA 27 cells was observed when irradiated with 250 kVp x-rays in the presence of 10 /xg/ml of 10B (Fig. 2).

BNCT Irradiation Studies. BNCT was initiated 30 days following i.c. implantation of 2 X 10^5 MRA 27 cells. The tumor size index at the time of irradiation was approximately 5.3 mm. The calculated doses in Gy (physical dose) and Gy-Eq delivered to the tumor, blood, and brain are summarized in Table 3. The physical doses represent the contributions of fast neutrons, 7 photons, 14N(n,p)14C, and 10B(n,a)-7Li reactions. In order to convert the physical dose to the equivalent dose, an RBE of 2.3 was assumed for the 10B(n,a)-7Li reaction and an RBE of 2 for fast neutrons and the 14N(n,p)14C reaction (13, 18, 20–22).

In order to convert the physical dose to the equivalent dose, an RBE of 2.3 was assumed for the 10B(n,a)-7Li reaction and an RBE of 2 for fast neutrons and the 14N(n,p)14C reaction (13, 18, 20–22).

Table 2 Distribution of p-boronophenylalanine 6 h following administration into nude rats carrying i.c. human melanoma cell line MRA 27a

<table>
<thead>
<tr>
<th>Tissue</th>
<th>10-BPA (µg/g ± SD)</th>
<th>L-BPA (µg/g ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>5.4 ± 1.6</td>
<td>8.8 ± 0.5</td>
</tr>
<tr>
<td>Blood</td>
<td>5.7 ± 3.1</td>
<td>9.9 ± 3.6</td>
</tr>
<tr>
<td>Tumor</td>
<td>13.7 ± 5.8</td>
<td>24.9 ± 2.4</td>
</tr>
<tr>
<td>Skin</td>
<td>7.6 ± 2.8</td>
<td>10.5 ± 4.1</td>
</tr>
<tr>
<td>Muscles</td>
<td>7.6 ± 3.7</td>
<td>14.2 ± 5.7</td>
</tr>
<tr>
<td>Eyes</td>
<td>7.4 ± 2.3</td>
<td>12.2 ± 3.9</td>
</tr>
</tbody>
</table>

a Two X 10^5 MRA 27 cells were implanted stereotactically into the right caudate nucleus of nude rats and 30 days later they were injected i.p. with 120 mg of either 10-BPA or L-BPA as a fructose complex.

The mean ± 1 SD represents 4 rats.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>BPA<sup>a</sup></th>
<th>4 MW-M</th>
<th>6 MW-M</th>
<th>8 MW-M</th>
<th>4 MW-M</th>
<th>6 MW-M</th>
<th>8 MW-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor<sup>+</sup></td>
<td>1.8</td>
<td>2.7</td>
<td>3.6</td>
<td>3.2</td>
<td>4.8</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Blood<sup>+</sup></td>
<td>5.0</td>
<td>7.6</td>
<td>10.0</td>
<td>10.6</td>
<td>15.9</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>Brain<sup>+</sup></td>
<td>1.8</td>
<td>2.7</td>
<td>3.6</td>
<td>3.2</td>
<td>4.8</td>
<td>6.4</td>
<td></td>
</tr>
</tbody>
</table>

^a Reactor exposure times are indicated in MW-M.

^b Dose estimates were based on a tumor 10B concentration of 23.7 µg/g, a blood 10B concentration of 9.4 µg/g, and a brain 10B concentration of 8.4 µg/g. This includes contributions from fast neutrons, γ photons, and the 14N (n,p) 14C and 10B (n,a) 7Li reactions.

^c For the estimation of equivalent dose the following RBE values were used: 14N (n,p) 14C reaction, 2.0; fast neutrons, 2.0; 10B (n,a) 7Li, 2.3; γ photons, 1.0.

^d Administered i.p. as a fructose complex 6 h prior to irradiation.

^e Two × 10⁵ MRA 27 cells were implanted stereotactically into the right caudate nucleus of nude rats and 30 days later they were irradiated at the Brookhaven Medical Research Reactor.

DISCUSSION

In the present study BNCT was used to treat nude rats carrying i.e. human melanoma with 10B-BPA as the capture agent. BPA-fructose complex was administered systemically and showed selectivity for the tumor compared to the normal brain and blood, which confirms other previously reported results (8-15, 23, 24). 10B-BPA concentration in the tumor was 23.7 µg 10B/g and was within the range (15-30 µg/g) considered for BNCT to be effective (7). The 1.8× higher uptake of the physiological L isomer compared to the α racemic mixture suggests that 10B-BPA accumulated in the tumor through a metabolic pathway and not by diffusion and is similar to data reported by Codere et al. (24).

Prolongations of survival times were observed in a dose dependent relationship with all radiation doses, and the higher the calculated radiation dose, the greater the MeST. This was shown with the three BNCT treated groups and was similar to our preliminary results (15). Seventy to 80% of all BNCT treated rats showed long term survival (>100 days) compared to 22-30% for irradiated controls. Forty % of rats treated with BPA + 8 MW-M (21.2 Gy-Eq) were still alive and in good condition 300 days following tumor implantation. In the second experiment, no rats from the irradiated control that had received 3.6
The therapy was initiated 31 days following i.e. implantation of 2 \times 10^5 of MRA 27 cells into the right caudate nucleus of nude rats.

Fig. 5. Kaplan-Meier plots of rats carrying i.e. MRA 27 human melanoma tumor following a single dose of γ-irradiation (12 Gy) or fractionated γ-irradiation (2.0 Gy \times 9). The therapy was initiated 31 days following i.e. implantation of 2 \times 10^5 of MRA 27 cells into the right caudate nucleus of nude rats.

Gy or 6.4 Gy-Eq survived more than 82 days. However, 21% of BNCT treated rats were still alive and in good condition >220 days following implantation.

The MeST of animals treated with BPA and 4 MW-M of irradiation (effective dose, 10.6 Gy-Eq) was higher than that of those rats that had received 12 Gy of γ-irradiation. This could be explained by the 48% hypoxic fraction of MRA 27 cells and their high ability to repair potentially lethal damage. The presence or absence of oxygen highly influences the biological effectiveness of γ-irradiation by repairing the damage produced by free radicals. On the other hand, oxygen enhancement of tumor cell killing should have no effect on the 10Be-$(n,\alpha)^7$Li and 14N(n,p)7Li reactions.

The toxicological studies of BPA injected into mice and rats at neutral pH have shown no significant systemic toxicity for a dose of 5 and 3 g/kg, respectively (25, 26). In addition, the clonogenic assays of MRA 27 cells with or without BPA showed no change in the plating efficiency. Saris et al. (14) have shown that the MeST of glioma bearing mice with or without the administration of BPA (no irradiation) were 18.7 and 18.3 days, respectively. These studies indicate that 10B-BPA is neither toxic nor tumoricidal unless it is subjected to neutron irradiations.

In BNCT groups, the radiation doses to the tumor were 3.3-fold higher than irradiated control groups, and this was attributed to the 10Be-$(n,\alpha)^7$Li reaction. The radiation effects of the 10Be-$(n,\alpha)^7$Li reaction are highly dependent upon the subcellular distribution of 10Be (27, 28) and since the subcellular localization of 10Be-BPA is unknown, the calculated doses in Gy or Gy-Eq are imprecise because they are based on uniform 10Be distribution throughout the tumor and normal tissues. Utilizing a double-labeling technique with BPA and tritiated thymidine, it has been shown that 10Be-BPA accumulated in proliferating regions of murine melanoma (24). In contrast to BPA, sodium borocaptate or Na$_2$B$_{12}$H$_{14}$SH accumulated more in nonproliferating regions of s.c. implanted murine melanomas (29). This suggests that if both BPA and sodium borocaptate Na$_2$B$_{12}$H$_{14}$SH were used in combination as capture agents, even more favorable tumor boron uptake might be achieved, and the results of BNCT might be better than those obtained with BPA alone.

The first clinical trials of BNCT of patients with brain tumors revealed very serious neurological lesions including coagulation necrosis of both the white and gray matter, vascular thrombosis, fibrin deposition and polymorphonuclear cell infiltrates in the wall of blood vessels, demyelination, and reactive gliosis (30). This was primarily due to the boron compounds used, which were not selectively accumulated by tumors. In the present study, however, the difference in the concentrations of 10Be-BPA in the tumor versus normal brain and blood resulted in radiation doses to the brain (5.8–11.6 Gy-Eq) and blood (6.1–12.3 Gy-Eq) that were 1.8 and 1.7 times less than those delivered to the tumor. This illustrates the potential advantage of BPA based BNCT over other forms of radiation therapy. Calvo et al. (31) have reported that necrosis of the cerebral white matter developed in rats 36 weeks following a single dose of 22.3 Gy of γ-ray irradiation. However, doses of less than 12 Gy, as in the present study, were considered to be tolerable by the brain parenchyma (32, 33). At the present time we are in the process of studying the late radiation effects produced in the rat brain by BNCT following administration of BPA. This should provide information on the normal tissue tolerance of the brain parenchyma and cerebral vasculature following BNCT.

Our data suggest that BPA has promise as a capture agent for BNCT of melanoma metastatic to the brain, but prior to the initiation of any clinical studies, it is essential that the therapeutic efficacy should be determined in a large animal model. Furthermore, it is essential that the long term radiation effects, which may be produced in normal brain following BNCT, be clearly defined.

ACKNOWLEDGMENTS

The authors wish to thank Dianne Adams, Joan Rotaru, Mary Ross, and David Carpenter for their technical assistance.

REFERENCES

*E. K. Rofstad, unpublished observations.

Boron Neutron Capture Therapy of Intracerebral Melanoma Using Boronophenylalanine as a Capture Agent

Khalid Z. Matalka, Michael Q. Bailey, Rolf F. Barth, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/53/14/3308

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/53/14/3308. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.