The MRP Gene Associated with a Non-P-glycoprotein Multidrug Resistance Encodes a 190-kDa Membrane Bound Glycoprotein

Nandigama Krishnamachary and Melvin S. Center

Division of Biology; Kansas State University, Manhattan, Kansas 66506

Abstract

HL60 cells isolated for resistance to Adriamycin (HL60/ADR) overexpress a 190-kDa ATP binding protein which has a minor sequence homology with P-glycoprotein. It has also been observed that HL60/ADR cells overexpress the MRP gene which was first identified as a component of a non-P-glycoprotein mediated multidrug resistance of H69/ADR cells [Cole et al., Science (Washington DC), 258: 1650, 1992]. A complementary DNA of MRP has been cloned and based on the deduced sequence encodes a member of the superfamily of proteins which bind ATP and function in various transport processes [Cole et al., Science (Washington DC), 258: 1650, 1992]. In view of this it was of interest to identify the protein encoded by MRP and determine if it may be related to p190. In the present study we have prepared antisera against three synthetic peptides which correspond to the deduced sequence of the MRP protein. Proteins reactive with the antisera have been examined in HL60/ADR cells using Western blot analysis. All antisera react with a 190 kDa protein contained in membranes of resistant but not sensitive cells. One antisera used for further studies is not reactive with P-glycoprotein contained in membranes of HL60 cells isolated for resistance to vincristine. Analysis of subcellular fractions demonstrates that p190 is present primarily in the endoplasmic reticulum with lower levels also present in plasma membranes. Treatment of HL60/ADR cells with tunicamycin results in the appearance of a 165-kDa resistance associated protein which reacts with the antipeptide serum. The results of this study therefore demonstrate that the MRP gene encodes a 190-kDa membrane bound glycoprotein.

Introduction

Previously we have isolated and characterized HL60 cells selected for resistance to Adriamycin (1). These cells are multidrug resistant and defective in the cellular accumulation of drug (1). Despite the absence of detectable P-glycoprotein (2) reduced drug accumulation appears to be related to enhanced levels of a drug efflux pump (1). It has also been found that HL60/ADR cells overexpress a membrane 190-kDa ATP binding protein which has a minor sequence homology with P-glycoprotein (3, 4). This is based on the finding that an antiserum prepared against a P-glycoprotein peptide reacts with both P-glycoprotein and p 190 (4). Recently Cole et al. (5) have identified a gene designated MRP (multidrug resistance associated protein) which is overexpressed in the non-P-glycoprotein multidrug resistant (H69/AR) derived from human small cell lung cancer cells (6). A cDNA of this gene has been cloned and the nucleotide sequence has been determined (5, 7). Based on this sequence the MRP gene encodes a protein of 1531 amino acids (7) which is a member of the superfamily of ATP binding transmembrane transport proteins (5). Recently we have observed that the MRP gene is also highly overexpressed in the HL60/ADR isolate. In view of this we have examined HL60/ADR cells for proteins reactive with antisera prepared against synthetic peptides which correspond to the deduced sequence of the MRP protein. The results demonstrate that the MRP gene encodes a membrane glycoprotein with a molecular mass of 190 kDa.

Materials and Methods

Cell Lines. HL60 cells isolated for resistance to Adriamycin (HL60/ADR) and HL60 cells isolated for resistance to vincristine (HL60/Vinc) were as described previously (1, 3). HL60/ADR and HL60/Vinc exhibit an 80- and 140-fold increase, respectively, to the selecting agent.

Peptide Synthesis and Immunization. Peptides were synthesized according to the deduced sequence of the MRP protein (7) by Research Genetics, Huntsville, AL. Three peptides having the following sequences were prepared: peptide 1. KEDTSEQVVPVLVKN (amino acids 246–260); peptide 2. KSKDNRKLMNIEILN (amino acids 496–510); peptide 3. EAKKEETWKLMKDI (amino acids 836–850). The synthetic peptides were conjugated by means of glutaraldehyde to keyhole limpet hemocyanin, emulsified with Freund’s complete adjuvant, and thereafter injected s.c. into a New Zealand White rabbit. After 3 and 6 weeks a second and third injection of conjugated material in incomplete adjuvant was made and after an additional 3 weeks the rabbit was bled. Antisera ASP45 and ASP14 were prepared against the P-glycoprotein peptides TKVGDQKTQLSGQK (amino acids 1166–1181) and GTQLSGQKQR1A1A (amino acids 1173–1187), respectively, as described previously (4).

Immunoblots. Membrane proteins (75 μg) were separated by electrophoresis in a 7.5% sodium dodecyl sulfate-polyacrylamide gel and the proteins were transferred to nitrocellulose paper described by Towbin et al. (8). The paper was incubated in PNBT for 2 h at 37°C and thereafter incubated with antisem diluted in PNBT for 15 h at room temperature. After a washing with PNBT the nitrocellulose was incubated with 125I-labeled protein A for 2 h at room temperature and thereafter washed extensively with PNBT. The paper was dried and immunoreactive proteins were detected by autoradiography. Molecular weight standards containing myosin (M, 212,000), β-galactosidase (M, 116,000), phosphorylase b (M, 97,000), bovine serum albumin (M, 66,200), catalase (M, 57,500), and aldolase (M, 40,000) were used to calculate the apparent molecular size of proteins reactive with the antipeptide sera.

Cell Membranes. A crude membrane fraction was isolated from sensitive and resistant cells as described previously (9). For certain experiments plasma membranes and endoplasmic reticulum were isolated after centrifugation of the crude membrane fraction in a discontinuous sucrose gradient (9). The membrane subfractions have been previously characterized enzymatically and by electron microscopy (9).

Results

Western Blot Analysis with Antisera Prepared against Peptides of the Deduced MRP Protein Sequence. Using an oligonucleotide probe based on the sequence of a cloned cDNA of the MRP gene (5) we have found that this sequence is highly overexpressed in HL60 cells isolated for resistance to Adriamycin (4). The oligonucleotide reacts with a single major mRNA of about 6 kilobases. In order to identify the protein encoded by MRP antisera were prepared against peptides synthesized according to the deduced sequence of the MRP protein (5). Western blot analysis with antisera designated, ASPKE prepared against peptide 1 (see “Materials and Methods”) demon-
MRP GENE ENCODES A 190-kDa GLYCOPROTEIN

strates the presence of a 190-kDa protein contained in membranes of resistant cells (Fig. 1, Lane 2) but absent in membranes prepared from parental HL60 cells (Fig. 1, Lane 1). Essentially identical results have been obtained with antisera against peptides 2 and 3 (see “Materials and Methods”) except that reactivity against p190 was less than that found with antiserum ASPKE (not shown). Parallel experiments have been carried out with membranes prepared from HL60 cells isolated for resistance to vincristine (3). These cells exhibit a multidrug resistance which is related to the presence of P-glycoprotein (3). The results show that ASPKE does not react with P-glycoprotein. This would be expected since the peptide sequence used to prepare ASPKE is not contained in the P-glycoprotein molecule (5). Western blot analysis has also been conducted with plasma membranes and endoplasmic reticulum prepared from sensitive and resistant HL60 cells. p190 detected with ASPKE is contained primarily in the endoplasmic reticulum (Fig. 2, Lane 4) with lower levels also found in the plasma membrane fraction (Fig. 2, Lane 2). p190 is not detectable in plasma membranes or endoplasmic reticulum prepared from sensitive cells (Fig. 2, Lanes 1 and 3). Other studies have also demonstrated that the cytoplasmic fraction of HL60/ADR cells does not contain any resistance associated protein reactive with the ASPKE antiserum (not shown). Additional studies have been carried out in which endoplasmic reticulum of HL60/ADR and HL60/Vinc cells were examined in parallel by Western blot analysis using antisera ASPKE (Fig. 3a) and

ASP45 (Fig. 3B). ASP45 is an antiserum prepared against a P-glycoprotein synthetic peptide as described in Methods. In a separate experiment endoplasmic reticulum prepared from the same two resistant isolates was examined in a Western blot which was probed with the antiserum ASP14 (Fig. 3C). This antiserum which was prepared against a P-glycoprotein synthetic peptide (see “Materials and Methods”) was previously used to detect a 190-kDa protein in HL60/ADR cells (4). The ASP14 antiserum is also reactive with P-glycoprotein.
The results of this study demonstrate that the p190 protein of HL60/ADR cells detected with ASPKE and ASP14 has essentially the same electrophoretic mobility relative to the 180-kDa P-glycoprotein (Fig. 3). Experiments have also been conducted in which resistant cells were incubated in the absence or presence of tunicamycin in order to block N-linked carbohydrate addition. Using an antiserum against a synthetic peptide (ASP14) prepared against a synthetic peptide and also capable of reacting with the photoactive ATP binding protein, studies using tunicamycin confirmed that the ASP14 peptide and the homologous sequence in MRP represent a domain which may be involved in nucleotide binding (5).

Fig. 4. Western blot analysis of endoplasmic reticulum from resistant cells incubated in the absence or presence of tunicamycin. Resistant HL60/ADR cells were centrifuged and suspended in fresh RPMI-10% fetal bovine serum at a cell concentration of 5 × 10⁷/ml. The cells were divided into three parts and thereafter incubated in the absence or presence of 2.5 or 5.0 μg/ml of tunicamycin for 15 h at 37°C. At the end of this time period endoplasmic reticulum was prepared and Western blot analysis was carried out using the ASP14 antisera. Lane 1, no tunicamycin added; Lanes 2 and 3, results obtained with cells treated with 2.5 and 5.0 μg/ml of tunicamycin, respectively.

Discussion

The present study demonstrates that the MRP gene encodes a 190-kDa glycoprotein which is highly overexpressed in HL60 cells isolated for resistance to Adriamycin. The protein is present primarily in the endoplasmic reticulum of resistant cells but lower levels are also contained in the plasma membrane fraction. Studies using tunicamycin to block N-linked carbohydrate addition suggests that a reduced glycosylated form of p190 has a molecular mass of about 165 kDa. Based on the deduced sequence of a full length cDNA of MRP the gene encodes a protein containing 1531 amino acids (5, 7). Thus p165 has an apparent size close to that expected for the protein encoded by MRP. Previously, a 190-kDa protein was detected in HL60/ADR cells using an antiserum (ASP14) prepared against a synthetic peptide which corresponds to the deduced sequence of P-glycoprotein (4). This peptide has the sequence GTQLSGGQKQRIAIA (4) and contains some homology with the deduced sequence GVNLSGGQKQRVSLA contained in the MRP protein (5, 7). This latter sequence contained in the MRP protein was presumably recognized by the ASP14 serum in studies with HL60/ADR cells (4). It is thus indicated that the ASP14 and ASPKE antisera recognize the same p190 protein contained in the HL60/ADR isolate. It is also of interest that the ASP14 peptide and the homologous sequence in MRP represent a domain which may be involved in nucleotide binding (5).

P165 is an ATP binding protein and is capable of reacting with the photoactive agent 8-azido-[32P]ATP (3).

Previous studies have shown that the independent anthracycline resistant isolate HL60/AR (10) also contains overexpression of p190 as determined in Western blots using the ASP14 antisera (4). More recently using antiserum against the ASP14 peptide p190 has been found to be overexpressed in the non-P-glycoprotein mediated resistant isolates CORL23/R (11) derived from a large cell lung cancer cell line (12), GLC4/R (13), derived from a small cell lung tumor cell line (14) and MOR/R derived from adenocarcinoma cells (15). Using appropriate MRP probes it has also been observed that this gene is highly overexpressed in HL60/AR,4 CORL23/R and MOR/R (15), and GLC4/R (16). These results thus demonstrate a close correlation between the levels of MRP expression and the levels of the p190 protein. Also the finding that MRP is overexpressed in many independent resistant isolates provides further support for an involvement of this gene in drug resistance. Future studies using the ASPKE antiserum should provide insight into the importance of the MRP protein in clinical drug resistance.

Previous studies have shown that HL60/ADR (1), HL60/AR (10), CORL23/R (12), and GLC4/R (14) isolates are defective in the cellular accumulation of drug and this appears to be related to enhanced levels of a drug efflux system. Of interest is the finding that the resistance of the H69/AR cell does not appear to be related to reduced drug levels (17) although these cells overexpress MRP (5). Evidence obtained in the last few years suggest that some non-P-glycoprotein mediated resistant isolates may contain a mechanism for sequestering drug away from cytotoxic targets. Thus, studies using fluorescence microscopy to follow the fate of daunomycin in certain resistant cell lines (11, 16, 18, 19), possibly the p190 protein contributes to drug efflux and/or the partitioning of drug into specific cellular organelles. The exact function of this protein in these events remains, however, to be determined.

Acknowledgments

We wish to thank Dr. Peter Twentyman and Dr. Henk Broxterman for providing, prior to publication, their results on MRP gene expression in certain multidrug resistant isolates.

References

2. McGrath, T., and Center, M. S. Adriamycin resistance in HL-60 cells: analysis of resistance associated membrane proteins and levels of mdr.


The MRP Gene Associated with a Non-P-glycoprotein Multidrug Resistance Encodes a 190-kDa Membrane Bound Glycoprotein

Nandigama Krishnamachary and Melvin S. Center


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/53/16/3658

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.