Growth Factors / Receptors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Clone</th>
<th>Source</th>
<th>Isotype</th>
<th>Works in</th>
<th>Epitope</th>
<th>Quantity</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGFα</td>
<td>213-4.4</td>
<td>Mouse</td>
<td>IgG2a</td>
<td>Human</td>
<td>Residues 34-50</td>
<td>100 μg</td>
<td>GF10</td>
</tr>
<tr>
<td>TGFβ3</td>
<td>236-5.2</td>
<td>Mouse</td>
<td>IgG1</td>
<td>Human</td>
<td>Not Known</td>
<td>100 μg</td>
<td>GF16</td>
</tr>
<tr>
<td>bFGF</td>
<td>236-5.2</td>
<td>Polyclonal</td>
<td>IgG</td>
<td>Human</td>
<td>Residues 40-63</td>
<td>100 μg</td>
<td>PC16</td>
</tr>
<tr>
<td>EGF</td>
<td>236-5.2</td>
<td>Polyclonal</td>
<td>IgG</td>
<td>Human</td>
<td>Not Known</td>
<td>100 μg</td>
<td>PC08</td>
</tr>
<tr>
<td>PDGF</td>
<td>528</td>
<td>Rabbit</td>
<td>IgG2a</td>
<td>Human</td>
<td>Residues 101-116</td>
<td>100 μg</td>
<td>PC01</td>
</tr>
<tr>
<td>EGFR (c-neu)</td>
<td>3B5</td>
<td>Mouse</td>
<td>IgG1</td>
<td>Human, Murine</td>
<td>C-Terminal</td>
<td>100 μg</td>
<td>GR01</td>
</tr>
<tr>
<td>Insulin R</td>
<td>29B4</td>
<td>Mouse</td>
<td>IgG2b</td>
<td>Human, Rodent</td>
<td>Internal</td>
<td>100 μg</td>
<td>GR07</td>
</tr>
<tr>
<td>PDGFR</td>
<td>3B5</td>
<td>Mouse</td>
<td>IgG1</td>
<td>Human</td>
<td>Not Known</td>
<td>100 μg</td>
<td>GR14</td>
</tr>
<tr>
<td>IGFR</td>
<td>2B2A6</td>
<td>Mouse</td>
<td>IgG1</td>
<td>Human</td>
<td>Not Known</td>
<td>100 μg</td>
<td>GR11</td>
</tr>
</tbody>
</table>

- **EXCELLENT!**
- **Works well**
- **Works adequately**
- ○ Not recommended for this application

Additional Products

Plus Quantitative ELISAs Immunohistochem Kits

- **neu**
- **EGF-R**
- **EGF**
- **TGFα**

Technical Information or Orders

For technical information or to order, call 800-662-2616.
INTERACTIONS OF CANCER SUSCEPTIBILITY GENES AND ENVIRONMENTAL CARCINOGENS

Joint Meeting Organized by the American Association for Cancer Research (AACR) and the International Agency for Research on Cancer (IARC)

Supported by Generous Grants from the National Institute of Environmental Health Sciences The Commission of the European Communities La Ligue Nationale Contre Le Cancer

November 9-13, 1993 Lyon, France

CONFERENCE CHAIRPERSONS
Frederick P. Li / Boston, USA
Ruggero Montesano / Lyon, France

PROGRAM COMMITTEE
Kari K. Alitalo / Helsinki, Finland
J. Carl Barrett / Research Triangle Park, USA
Valerie Beral / Oxford, England
Dirk Bootsma / Rotterdam, The Netherlands
Curtis C. Harris / Bethesda, USA
Henry C. Pitot / Madison, USA
Bruce A. J. Ponder / Cambridge, England
Carmen Sapienza / La Jolla, USA
Takashi Sugimura / Tokyo, Japan
Lorenzo Tomatis / Lyon, France
Lee W. Wattenberg / Minneapolis, USA
I. Bernard Weinstein / New York, USA

SCIENTIFIC PROGRAM

Opening Lectures
Lee W. Wattenberg / Minneapolis, USA
Lorenzo Tomatis / Lyon, France
Curtis C. Harris / Bethesda, USA
Manfred F. Rajewsky / Essen, Germany

Human Cancers
Frederick P. Li / Boston, USA
Valerie Beral / Oxford, England
Bruce A. J. Ponder / Cambridge, England
Neil E. Caporaso / Bethesda, USA
Gilbert M. Lenoir / Lyon, France

Genetic Instability
Kari K. Alitalo / Helsinki, Finland
Thierry Heidmann / Paris, France
Thea D. Tlsty / Chapel Hill, USA

Markers of Individual Exposure
Ruggero Montesano / Lyon, France
Peter A. Cerutti / Epalinges, Switzerland

Experimental Models of Genetic Susceptibility
J. Carl Barrett / Research Triangle Park, USA
Henry C. Pitot / Madison, USA
Bernard M. Meichle / Heidelberg, Germany
Lauri Aaltonen / Helsinki, Finland

Opportunities for Prevention
I. Bernard Weinstein / New York, USA

DNA Damage and Repair
Dirk Bootsma / Rotterdam, The Netherlands
John M. Essigmann / Cambridge, USA
Mutsuo Sekiguchi / Fukuoka, Japan

Applicants are encouraged to submit abstracts for poster presentation.

Mechanisms of Transgenerational Carcinogenesis
Carmen Sapienza / La Jolla, USA
John Cairns / Oxford, England
Ulrike Wintersberger / Vienna, Austria
David Malkin / Toronto, Canada
Christopher J. Kemp / Glasgow, Scotland

Information and Application Forms
American Association for Cancer Research
Public Ledger Building
620 Chestnut Street, Suite 816
Philadelphia, PA 19106-3483
(215) 440-9300 (215) 440-9313 (FAX)
Molecular Approaches to Cancer Immunotherapy

November 7-11, 1993
The Grove Park Inn, Asheville, North Carolina

CONFERENCE CHAIRPERSON
Ralph A. Reisfeld / La Jolla, CA

SCIENTIFIC PROGRAM

Keynote Address
Giorgio Trinchieri / Philadelphia, PA

Monoclonal Antibodies for Tumor Therapy
Alan N. Houghton / New York, NY
Albert F. LoBuglio / Birmingham, AL
Ira Pastan / Bethesda, MD
David A. Scheinberg / New York, NY

Genetically Engineered Antibodies
Stephen D. Gillies / Lexington, MA
Jeffrey Schlim / Bethesda, MD
Richard P. Junghans / Boston, MA
Sherie L. Morrison / Los Angeles, CA
Clive Woodhouse / Mountain View, CA

Gene Therapy of Cancer
James J. Mulé / Palo Alto, CA
Drew M. Pardoll / Baltimore, MD
David T. Curie / Chapel Hill, NC
Patrick Hwu / Bethesda, MD
Elizabeth Jaffee / Baltimore, MD

Cytokines in Tumor Therapy
Steven Gillis / Seattle, WA
Roland Mertelsmann / Freiburg, Germany
Ronald Levy / Stanford, CA
Terry Strom / Boston, MA

Tumor Antigens Recognized by T-Cells
Olivera J. Finn / Pittsburgh, PA
Per A. Peterson / La Jolla, CA
Martin A. Cheever / Seattle, WA
Michael T. Lotze / Pittsburgh, PA

Antibodies as Immunogens
Soldano Ferrone / Valhalla, NY
Dorothy Herlyn / Philadelphia, PA
Kenneth Foon / Lexington, KY
Alan N. Houghton / New York, NY

Future of Cancer Immunotherapy
Isaiah J. Fidler / Houston, TX
Paul M. Sondel / Madison, WI
Irwin D. Bernstein / Seattle, WA
Eugenie S. Kleinerman / Houston, TX

Applicants are encouraged to submit abstracts for poster presentation.

Information and Application Forms
American Association for Cancer Research
Public Ledger Building
620 Chestnut Street, Suite 816
Philadelphia, PA 19106-3483

215-440-9300 215-440-9313 (FAX)
IL-2R

T Cell Diagnostics

Takes soluble IL-2R testing to its Maximum!

Maximum performance

Our standard curve has been extended to 6400 U/mL, expanding the test's utility while making most dilutions unnecessary.

Maximum flexibility

Run your choice of sample types: serum, citrated, EDTA, or heparinized plasma, and cell culture supernatants.

Maximum responsiveness

Call Customer Service for fast, professional assistance. Same day shipping available.

Maximum convenience

Report results in the industry preferred U/mL, or convert simply to pg/mL.

Maximum sensitivity

With our new optional protocol, you can read samples as low as 100 U/mL with confidence.

Optional high sensitivity protocol

New extended range from 400-6400 U/mL

100 100 1600 3200 6400 U/mL

T Cell Diagnostics, Inc. brings to you the most sophisticated IL-2R Test Kit available today — it's the one most used by researchers. Other maximum performance products from T Cell Diagnostics include: Biokine® Kits for measurement of IL-2, TNFα, IL-6, IL-7, IL-1β, and GM-CSF; and CELLFREE® Kits for measurement of soluble CD4, CD8, CD35, CD23 and ICAM-1. For more information, call 1-(800) 624-4021 or (617) 621-1410.

HELPING YOU EXPLORE THE IMMUNE RESPONSE

T Cell Diagnostics, 38 Sidney St., Cambridge, MA 02139 Tel: (617) 621-1410.

T Cell Diagnostics Europe 28 Crown Road, Wheatley, Oxford OX33 1UL, U.K. Tel: 0865-873489

CELL SIGNALLING AND CANCER TREATMENT

Sponsored by:
American Association for Cancer Research
European Organisation for Research and Treatment of Cancer
(Pharmacokinetics and Metabolism Group)
British Association for Cancer Research

December 5-9, 1993
El San Juan Hotel, San Juan, Puerto Rico

CONFERENCE CHAIRPERSONS
Garth Powis / Tucson, AZ
Paul Workman / Macclesfield, England

PROGRAM COMMITTEE
Sara A. Courtneidge / Heidelberg, Germany
Hans H. Grunicke / Innsbruck, Austria
John A. Hickman / Manchester, England
Katherine A. Kennedy / Washington, DC
John S. Lazo / Pittsburgh, PA
Thomas R. Tritton / Burlington, VT

SCIENTIFIC PROGRAM

Introduction
Garth Powis / Tucson, AZ
Allen I. Oliff / West Point, PA

Tyrosine Kinases and Inhibitors
Lewis T. Williams / San Francisco, CA
Alexander Levitzki / Jerusalem, Israel
Alex Matter / Basel, Switzerland

Serine/Threonine Kinases and Inhibitors
Peter J. Parker / London, England
Hans H. Grunicke / Innsbruck, Austria

GTP Binding Proteins
Alan K. Hall / London, England
Frank McCormick / Richmond, CA
Jay Gibbs / West Point, PA

Domain Binding and Inhibition
Sara A. Courtneidge / Heidelberg, Germany

Lipid Signalling
Lewis C. Cantley / Boston, MA
Alan P. Kozikowski / Rochester, MN
Paul Workman / Macclesfield, England
Garth Powis / Tucson, AZ

Modulation of Signalling in Combination Chemotherapy
Thomas R. Tritton / Burlington, VT
John S. Lazo / Pittsburgh, PA
Stephen B. Howell / La Jolla, CA

Signalling and the Cell Cycle
Laurent Meijer / Roscoff, France
Caroline Dive / Manchester, England
Michael J. Morin / Groton, CT
Doris L. Slate / Palo Alto, CA
Adrian L. Harris / Oxford, England

Gene Targeting
Stanley T. Crooke / Carlsbad, CA
Michael E. Hogan / Houston, TX

Summary
Paul Workman / Macclesfield, England

Applicants are encouraged to submit abstracts for poster presentation.

Application Deadline: September 7, 1993

Information and Application Forms
American Association for Cancer Research
Public Ledger Building
620 Chestnut Street, Suite 816
Philadelphia, PA 19106-3483
215-440-9300 215-440-9393 (FAX)
Research and Training Opportunities in the Epidemiology and Biostatistics Program at the National Cancer Institute

Whether your goal is to apply your knowledge as a board-certified subspecialist or to pursue a career in research, a fellowship in the NCI's Epidemiology and Biostatistics Program can offer you unlimited opportunities to investigate the causes of cancer. NCI is one of thirteen institutes of the National Institutes of Health, the largest institution in the world dedicated solely to biomedical research. Here you will work side-by-side with some of the most distinguished physician-scientists and researchers in the world.

The Epidemiology and Biostatistics Program is responsible for intramural and collaborative investigations into the distribution, causes, and natural history of cancer, as well as the means for its prevention. Areas of special interests for investigation include genetics, occupation, radiation, diet/nutrition, medications, infectious agents, lifestyle factors, environmental pollution, and statistics. Emphasis is placed on interdisciplinary investigations that integrate epidemiologic and laboratory approaches. A fellowship in epidemiology can be combined with training in either our accredited subspecialty programs in Medical Genetics, or Medical Oncology, or Pediatric Hematology/Oncology which offers credit toward board eligibility on an individual basis.

Combined programs can also be arranged for fellows interested in pursuing dual subspecialty board certification. Appointments are usually for a three-year period, but may be extended.

Positions are available to highly qualified applicants from a variety of academic, clinical, and research backgrounds. Applicants should hold an MD or a doctoral-level degree in epidemiology, biostatistics, or other relevant areas of biomedical research, or be pursuing such a degree. US citizens and resident aliens eligible for citizenship within four years are eligible to apply. Applications are accepted on a continuing basis.

To apply, please send a cover letter, curriculum vitae, bibliography, and statement of research interests to Dr. Joseph F. Fraumeni, Jr. or Dr. Michael Alavanja at the Epidemiology and Biostatistics Program of the Division of Cancer Etiology. In addition, please have letters of recommendation sent from three scientists who can provide an evaluation of your qualifications. For those wishing further information about fellowship opportunities, please write to Dr. Alavanja or call him at 301-496-1611.

NATIONAL CANCER INSTITUTE
Division of Cancer Etiology
National Institutes of Health, Executive Plaza North, Room 543
9000 Rockville Pike, Bethesda, MD 20892
Equal Opportunity Employer

Cancer Research
Dr. A. Smith
"In Vivo and in Vitro Analysis of..."
Filename: Smith.doc
Hardware, Operating system, Software

Cancer Research accepts submissions on disk to facilitate production.

Acceptable word processing packages are listed in Guidelines for Submitting Disks to AACC Publications, found in the back of every issue of Cancer Research. Tables and illustrations will be set from hard copy.

To submit your paper on disk, simply send a completed Disk Submission Form (found on the reverse of the Guidelines for Submitting Disks to AACC Publications) with your disk, labeled as shown above, to the AACC Publications Department. Be sure that the disk file is the most recent version of your paper and matches the hard copy printout.

For review purposes, 4 hard copy printouts of the manuscript and 4 copies of the original illustrations must accompany all submissions.
Keep up with the latest developments in

Cancer Research

The Official Journal of the
American Association for Cancer Research

Carlo M. Croce, M.D., Editor-in-Chief

Subscribe to Cancer Research—the leading citation source of original studies in cancer research and cancer-related biomedical science. Issued semimonthly, Cancer Research publishes 7,000 pages of important research each year, including the following regular features:

- The most up-to-date articles in basic research and clinical and epidemiological investigations by authors from the United States and more than 30 countries
- Perspectives in Cancer Research, in which leading investigators explore contemporary and at times controversial topics
- Advances in Brief, a rapid communication category for short but definitive, highly significant reports
- Supplemental issues developed from symposia or relevant subjects
- Proceedings of the American Association for Cancer Research, a special annual issue that offers stimulating new research ideas in abstract form

Order Now!

- Yes, I want to keep up with the latest developments in Cancer Research. Enter my one-year subscription.

1994 Subscription Rates:

- Individual $415
- Institutional $415

Add $60 for delivery outside the U.S. Subscriptions payable in advance (in US currency or equivalent) to:

WAVERLY PRESS, INC./CANCER RESEARCH
428 East Preston Street / Baltimore, MD 21202

NAME

INSTITUTION

ADDRESS

CITY/STATE/ZIP

Allow 8 weeks for receipt of first issue.
In 1971, after pursuing a long-standing interest in tumor regression, Alastair Currie drew together in Aberdeen, Scotland, a small team to study the biology of cell death in a number of mammalian systems. This issue's cover of Cancer Research focuses on this group, which includes Dr. Currie, his Ph.D. student Andrew Wylie, and John Kerr, a visiting fellow from Brisbane, Australia, who had already described the ultrastructure of a form of single cell death sometimes observed in tissues exposed to low concentrations of xenobiotics or to mild hyperthermia. The result of their interaction was the description of a distinctive series of structural changes that appear coordinately when the death of vertebrate cells appears to be triggered by internal stimuli, rather than merely by major perturbation of the environment. In their paper (Br. J. Cancer, 26: 239–257, 1972), they named this widespread mode of cell death “apoptosis.” The footnote from that paper is worth reproducing because it describes both the origin of the word and the suggested pronunciation:

We are most grateful to Professor James Cormack of the Department of Greek, University of Aberdeen, for suggesting this term. The word apoptosis is used in Greek to describe the “dropping off” or “falling off” of petals from a flower or leaves from a tree. To show the derivation clearly, we propose that the stress be placed on the penultimate syllable, the second half of the word being pronounced like “pōsōs” (with the “p” silent), which comes from the same root “to fall” and is already used to describe the drooping of the upper eyelid.

The concept and significance of apoptosis were slow to be accepted, and only a handful of papers in the 1970s cited this seminal work. In 1980, these same authors published a review in the International Review of Cytology (68: 251–306), in which they commented about this lack of interest in the subject:

The possibility that such “normal cell death” might involve active self destruction rather than passive degeneration has been virtually ignored; most regard the changes that take place in all dying cells as being akin to the postmortem autolysis of a corpse, a process hardly likely to stimulate enthusiastic investigation.

Back in Brisbane, Kerr continued to document the ultrastructure of apoptosis in a variety of circumstances, among them the death of tumor cells exposed to chemotherapeutic agents and immunological attack. The Scottish group, now in Edinburgh, Scotland, and led by Wyllie from the mid-1980s, described much of the underlying cell biology, including intranucleosomal chromatin cleavage, a specific glycan recognition system; the occasional dependence of the process on protein and RNA synthesis; the potential role of intracellular calcium; and most recently, the significance of c-myc and p53 in the initiation of the process.

Since 1990, there has been an explosion of interest in apoptosis. Probably the major reason for excitement in this area arose from studies focusing on the genetics of the process. New genes have been identified which can either turn on apoptosis or prevent it, and of perhaps greatest interest is the fact that oncogenes and tumor suppressor genes appear to be regulators of the process. If any one observation can be credited with stimulating this interest, it is probably the observation made in Stanley Korsmeyer's laboratory in St. Louis, MO, that the bcl-2 gene isolated from the breakpoint in follicular B-cell lymphoma could prevent cells from undergoing apoptosis (Nature (Lond.), 346: 334–336, 1990). However, inasmuch as citations to this paper could not have appeared until 1991, it is evident that this paper was not the only impetus for the resurgence of interest in apoptosis.

It has subsequently been demonstrated that bcl-2 can elicit resistance to many anticancer agents and, therefore, has a major impact on therapeutic efficacy. bcl-2 is one of a family of proteins with conserved sequence motifs; the other proteins include the ced-9 gene of the nematode Caenorhabditis elegans, the 19-kilodalton E1B protein of adenovirus, the BHRF-1 protein of the Epstein-Barr virus, and the mcl-1 protein expressed during myeloid cell differentiation. The function of these proteins remains elusive. Other proteins, such as ras and raf, which are involved in intracellular signal transduction, can also prevent cells from undergoing apoptosis. In contrast, expression of c-myc or wild-type p53 can induce apoptosis under certain circumstances. Identification of the involvement of these genes represents only one aspect of studies in apoptosis. The AACR has organized a Special Conference on Cell Death in Cancer and Development to be held in Chatham, MA, in October 1993 to discuss the multiple directions that this area of research is now taking. Andrew Wyllie will be presenting the Keynote Address.

Alastair R. Currie (right) graduated in science in 1941 and in medicine in 1944 from the University of Glasgow, Scotland. He led in succession the Division of Pathology at the Imperial Cancer Research Fund Laboratories, Oxford, England; the Department of Pathology at Aberdeen University Medical School; and the Department of Pathology at the University of Edinburgh. Through chairmanship of major scientific committees in the United Kingdom, including the Medical Research Council's Cell Board and the Scientific and Executive Committees of the Cancer Research Campaigns, he exerted a profound influence on the priorities of cancer research in Great Britain. His distinguished service to medical sciences led to many honors, including a knighthood in 1979. He is currently president of the Royal Society of Edinburgh, and although in retirement from university life, he continues to be a source of inspiration to his many students. John Kerr (left) graduated in medicine from the University of Queensland, Australia, in 1958. From 1962 to 1966 as Sir Roy Cameron's Ph.D. student in London, he first observed the characteristic ultrastructure of injured cells that was later to be recognized as apoptosis. In 1965, he returned to Queensland as Senior Lecturer, Reader, and since 1974, he has served as Professor of Pathology at the University of Queensland and adjunct Senior Principal Research Fellow at the Queensland Institute of Medical Research.

Andrew H. Wylie (center) graduated in medicine from the University of Aberdeen in 1967 and completed his Ph.D. under Professor Currie. Following postdoctoral training at Cambridge, England, he became Senior Lecturer, Reader, and in 1992, Professor of Experimental Pathology in the Department of Pathology, University of Edinburgh. A search of the Science Citation Index (bottom) was made to determine the citation frequency of the original 1972 paper defining apoptosis, and of the 1980 review on the subject. The bar graph displays the number of papers containing the word “apoptosis” or “apoptotic” in its title as determined from the Science Citation Index. Although there are many other papers that used different descriptors for this process, the papers retrieved by this search provide an accurate reflection of the interest in apoptosis since the term was first introduced.

We thank Andrew Wyllie for his contribution to the information presented in this legend.

Alan Eastman