Estrogen and Antiestrogen Modulation of MCF7 Human Breast Cancer Cell Proliferation Is Associated with Specific Alterations in Accumulation of Insulin-like Growth Factor-binding Proteins in Conditioned Media

Susan E. Pratt and Michael N. Pollak

Departments of Medicine and Oncology, McGill University, Montreal, Quebec, Canada H3T 1E2

ABSTRACT

Many neoplastic cell lines secrete insulin-like growth factor binding proteins (IGFBPs). The physiological role of these proteins is incompletely characterized; under various conditions IGFBPs have been observed to either enhance or inhibit the biological activity of insulin-like growth factors. MCF7 human breast cancer cells are known to be mitogenically responsive to insulin-like growth factors and estrogen, to secrete several IGFBPs, including BP-2, BP-4 and BP-5, and to be growth inhibited by type I IGF receptor expression in the ER+ MCF-7 cell line (26-28); however, effects of the antiestrogen tamoxifen on IGFBP expression have only been observed at the RNA level (27).

The ability of "antiestrogens" to attenuate IGF-I stimulated proliferation of ER+ breast cancer cells, even in the absence of estrogens, suggests that these agents can actively induce growth inhibitory signals, rather than merely block estrogen stimulated proliferation. To date, the only candidate antiestrogen activated growth inhibitor described is TGFβ (29). Because IGFBPs may also function as growth inhibitors (24, 30), we undertook to more completely describe estrogen and antiestrogen regulation of IGFBPs in MCF7 cells.

MATERIALS AND METHODS

Cell Culture. MCF-7 cells (obtained from American Type Culture Collection) were maintained in log-phase culture in α-modified Eagle's medium (GIBCO) supplemented with 10% FCS (GIBCO), 5 μg/ml bovine insulin (Sigma), and garamycin at 37°C and a 5% CO2 environment. Experimental conditions involved plating at 25,000-50,000 cells/cm² in phenol red-free Dulbecco's modified Eagle's medium (4 mg/ml glucose; GIBCO) supplemented with DCC-FCS to remove steroids. The cells were incubated in this medium for 3 days prior to treatment in order to eliminate endogenous steroid hormones. The medium was changed to 5% DCC-FCS/phenol red-free DMEM including tamoxifen (Sigma), ICI 182,780 (a generous gift from A. Wakeling; ICI Pharmaceuticals), and/or 17B-estradiol (Sigma) which were prepared as stock solutions in ethanol. Control conditions included the appropriate concentration of ethanol, which was ≤0.1%.

[3H]Thymidine Incorporation. After 2 days of treatment, [3H]thymidine was added to medium to achieve a final concentration of 0.1 μCi/μl. Incorporation was allowed to proceed for 2 h at 37°C, after which, monolayers were precipitated with 10% trichloroacetic acid for 1 h at 4°C. The acid insoluble precipitate was solubilized in 1 N NaOH and incorporated radioactivity was evaluated by a liquid scintillation counter. Under these experimental conditions, [3H]thymidine incorporation data correlated with results obtained through cell growth studies (data not shown).

IGFBP Evaluation. After 2 days of treatment in 5% DCC-FCS containing medium, the treatment of subconfluent monolayers was continued in serum free phenol-free DMEM for 16 h. One milliliter of conditioned medium from each experimental condition was centrifuged at 2000 rpm for 10 min prior to concentration (10-fold) with a Centricon 10 microcentrator (Amicon). Concentrated conditioned medium proteins were separated on a 12% sodium dodecyl sulfate-polyacrylamide gel under nonreducing conditions and transferred to nitrocellulose paper (Bio-Rad). IGFBPs were detected by the Western ligand blotting method of Hossenlopp et al. (31) using [125I]-IGF-I which had been iodinated to a specific activity of 150-200 μCi/μg by the chloramine T method. Using methods similar to those reported by Giudice et al. (32), the IGFBP bands were quantitated by an LKB densitometric scanner (Pharmacia) interfaced with Gelscan software (Pharmacia). The IGFBP band densities are expressed in arbitrary units which denote the integrated area under the absorbance peak.

At the time of conditioned medium collection, replicate monolayers were analyzed for protein content. The protein content of the 0.1 nM 17β-estradiol, 1 μM tamoxifen, and 1 μM ICI 182,780 treated monolayers were 131 ± 7%, 95 ± 9%, and 85 ± 9%, respectively, of the control condition. These values were used in the correction of raw data for the statistical analysis in Fig. 7.

Western Immunoblot Analysis. The identities of the Mr, 43,000-46,000 and Mr, 24,000 binding proteins were confirmed through Western immunoblotting.
turing of ligand blots. Briefly, blocked ligand blots were exposed to a rabbit polyclonal antibody directed towards rBP-3 (1:1000 dilution; Celltrix Pharmaceuticals) or to a rabbit antibody preparation directed towards rBP-4 (1:100 dilution; Austral Biomedical). Binding was detected after incubation with an alkaline phosphatase conjugated goat anti-rabbit serum (Bio-Rad) and NBT/BCIP substrate solutions (Bio-Rad).

RESULTS

The effects of 17β-estradiol, tamoxifen, and the pure antiestrogen, ICI 182,780 on MCF-7 cell proliferation were compared under estrogen-free, serum containing conditions (5% DCC-FCS in phenol red-free DMEM) (Fig. 1). Under these conditions, 0.1 nM 17β-estradiol elicited a significant 1.7-fold increase in the amount of [3H]thymidine incorporation after 2 days of treatment, and tamoxifen and ICI 182,780 at concentrations of 1 μM depressed MCF-7 cell proliferation by 73 and 90%, respectively. IGF-I (1.3 nM) stimulated [3H]thymidine incorporation 1.6-fold under these same conditions, and this stimulation was significantly inhibited when cells were coincubated with IGF-I and 1 μM ICI 182,780 (Fig. 2).

Under the same conditions used to evaluate MCF-7 cell proliferation in Fig. 1, the effects of 17β-estradiol, tamoxifen, and ICI 182,780 on IGFBPs were evaluated by performing Western ligand blots on equivalent volumes of cell conditioned medium after 2 days of treatment. Fig. 3 depicts a typical Western ligand blot. Control cells (Fig. 3, Lane 1) displayed three predominant IGF-I binding proteins with molecular weights of M, 24,000, 30,000, and 36,000. The M, 24,000 binding protein corresponds with the molecular weight observed for BP4 (33), and the identity of this band as BP-4 was confirmed through immunoblotting (data not shown). The M, 36,000 binding protein corresponds to the binding protein which has been designated as BP2 (34), and the M, 30,000 protein, which occurs as a broad band, is most likely BP5 (35) in accordance with the findings of McGuire et al. (28).

The effects of 17β-estradiol on IGFBP expression are illustrated in Fig. 2, Lanes 2-5, and quantitative evaluation through scanning densitometry reveals a dose dependent increase in IGFBP binding capacity after 2 days of treatment in the presence of 1.3 nM IGF-I. Data are expressed as the mean ± SEM and were tested for statistical significance relative to the control by a paired t test (n = 4). *, P < 0.05.

![Fig. 2. Effects of ICI 182,780 on IGF-I stimulation of MCF7 cell proliferation. Cell culture conditions were as described in Fig. 1. MCF7 cell proliferation was assessed by [3H]thymidine incorporation following 2 days of treatment in the absence (-) or presence (+) of 1.3 nM IGF-I. Data are expressed as the mean ± SEM and were tested for statistical significance relative to the control by a paired t test (n = 4). *, P < 0.05.](image)

Antiestrogen treatment with tamoxifen or ICI 182,780, in the absence of estrogen (Fig. 3, Lanes 5 and 9, respectively) resulted in decreased levels of BP-4 when compared to the control condition, and increased detection a M, 43,000-46,000 binding protein which was confirmed as BP3 (36) by immunoblotting (data not shown). Under culture conditions which included estradiol during the course of treatment, we observed that a reversal of the antiestrogen effect on IGFBPs occurs, particularly with respect to BP-3 and BP-4 (Fig. 3).

The concentration effects of ICI 182,780 on IGFBP accumulation in conditioned medium were examined, and quantitative evaluation revealed that regulation of IGFBP levels occurs in a dose dependent manner (Fig. 5). ICI 182,780 treatment, in the absence of estrogens, most dramatically influences the levels of BP-4 and BP-3 detected in the conditioned medium. Fig. 6 demonstrates that as proliferation declines, a reciprocal regulation of BP-3 and BP-4 occurs under conditions of increasing concentrations of ICI 182,780 (Fig. 6B). Both BP-4 and BP-3 band densities demonstrated a high correlation with cellular proliferation (r = 0.98 and -0.83, respectively) in this data set.

Fig. 7 presents statistical analysis of IGFBP levels under the four conditions presented in Fig. 1 (i.e., estrogen free control versus cells treated with 0.1 nM estradiol, 1 μM tamoxifen, or 1 μM ICI 182,780). Prior to analysis, densitometric values for each condition were corrected for monolayer protein content at the time of conditioned medium collection. To normalize the data from each autoradiograph for statistical analysis, a standard for each ligand blot was created by averaging the corrected band densities across the four conditions under study and assigning the average density a value of 100 arbitrary units. The data from each experimental band were then expressed relative to the standard value for the IGFBP band on that autoradiograph. The normalized data from five independent experiments were then evaluated for statistical differences relative to the control condition. The data in Fig. 7 present the mean (± SEM) of these measurements. Asterisks indicate statistically significant (P < 0.05) differences as determined by the Mann-Whitney U test.

In the experiments evaluated in Fig. 7, we were able to demonstrate the presence of BP-3 at low but detectable levels in the control condition. Estradiol treatment resulted in significant increases in BP-4 and the M, 30,000 and M, 36,000 binding proteins and decreased levels of BP-3. Neither tamoxifen nor ICI 182,780 affected the M, 36,000 protein, while both antiestrogens caused a significant decrease in IGF-I binding to BP-4, mean ± SEM and were tested for statistical significance relative to the control by a paired t test (n = 4). *, P < 0.05.
ESTROGEN AND ANTIESTROGEN MODULATION OF IGFBPs

Fig. 3. Western ligand blot of [125I]-IGF-I detected IGFBPs. Cells were cultured and treated for 2 days as described in Fig. 1. IGFBPs were then collected in serum-free treatment containing medium as described in "Materials and Methods." Each lane contains the equivalent of 1 ml of cell-conditioned medium. In this representative ligand blot, cells were treated with increasing concentrations of 17β-estradiol (10^{-11} M - 10^{-6} M) alone or in combination with 1 μM tamoxifen or 1 μM ICI 182,780.

Fig. 4. Effects of 17β-estradiol on IGFBP levels. Estrogen withdrawn MCF7 cells were treated with increasing concentrations of 17β-estradiol, and equivalent volumes of conditioned medium were evaluated by Western ligand blot. IGFBP bands were quantitated by densitometric scanning. Bars correspond to the relative abundance of each of the four IGFBP species at each estradiol concentration. Data presented are from a representative experiment.

In BP-4, increases in BP-3 occurred with both antiestrogens, but were greater with ICI 182,780 treatment. The M_c 30,000 binding protein was differentially regulated by the antiestrogens, being significantly increased by tamoxifen, and virtually unaltered by treatment with ICI 182,780.

Table 1 quantitates the total IGF-I binding capacity of the IGFBPs in the conditioned medium under the control, 0.1 nM 17β-estradiol, 1 μM tamoxifen, and 1 μM ICI 182,780 treatment conditions and presents the relative contributions of each of the IGFBP species to the total. Only estradiol treatment resulted in an appreciable change (1.5-fold increase) in the total IGFBP binding capacity of the conditioned medium. However, the relative contribution of each of the IGFBPs to the total following estradiol treatment remains nearly identical to that observed in the control condition. The M_c 36,000 protein is clearly a dominant IGFBP in MCF7 cells, and the contribution of this IGFBP to the total (35–39%) remained largely unaffected across the four conditions. A modest increase in the M_c 30,000 IGFBP occurred in all the treatment conditions when compared to the control, yet this protein remains a minor contributor (10–18%) to the total IGFBP. The IGFBPs most affected by the treatments in this analysis are BP-3 and BP-4. BP-4 is the predominant IGFBP in the conditioned medium of control and estradiol treated cells. Although BP-4 levels are significantly elevated with estradiol treatment (Fig. 7), its contribution to the total (44%) remains the same as that observed in the control cells (43%). With antiestrogen treatment, however, the contribution of BP-4 to the total declines (31% with tamoxifen treatment and 24% with ICI 182,780). BP-3, on the other hand, is a minor band in the control condition (9%) and is reduced to only 2% of the total IGFBP production by estradiol treated cells. With antiestrogen treatment, BP-3 con-
control levels. BP-3 has been shown to be an inhibitor of proliferation even under estrogen-free conditions they increase BP-3 to well above do not merely attenuate the estradiol-induced suppression of BP-3, but (27). In fact, the BP-3 level in the conditioned medium of control MCF-7 cells following treatment with tamoxifen or ICI 182,780. In the absence of estradiol. Regulation of BP-3 levels in the conditioned medium may occur at the transcriptional or translational levels of medium is to increase BP-3 to levels higher than those seen in the presence or the absence of estradiol. Regulation of BP-3 levels in the conditioned medium may occur at the transcriptional or translational levels of protein processing, or BP-3 levels may be controlled at the posttranslational level. BP-3 specific proteases have been shown to regulate IGFBP levels in serum (49, 50), tissue extracts (49), and in other biological fluids (50). The possibility exists that estrogens and antiestrogens modulate the expression of type I IGF receptors (12), the expression of IGF-I by liver and other tissues (46), and the circulating IGF-I concentration (47, 48). Furthermore, the view that ICI 182,780 merely acts to block estrogen stimulated proliferation appears incomplete, given the fact that it inhibits MCF7 proliferation even under estrogen-free conditions (20). Our data suggest that one mechanism by which ICI 182,780 is able to block IGF-I stimulated proliferation is to increase BP-3 to levels higher than those seen in the presence or the absence of estradiol. Regulation of BP-3 levels in the conditioned medium may occur at the transcriptional or translational levels of protein processing, or BP-3 levels may be controlled at the posttranslational level. BP-3 specific proteases have been shown to regulate IGFBP levels in serum (49, 50), tissue extracts (49), and in other biological fluids (50). The possibility exists that estrogens and antiestrogens modulate BP-3 levels, and therefore IGF-I bioactivity, is possible, particularly in the context of the proposal that in vivo, low molecular weight IGFBPs enhance extravascular diffusion of IGFs (24).

The ability of ICI 182,780 to inhibit IGF-I stimulated proliferation in keeping with accumulating evidence suggesting that there are multiple levels at which estrogens and antiestrogens interact with the IGF system. Antiestrogens have been shown not only to modulate IGFBP levels in IGF-responsive cells as reported here, but also to modulate the expression of type I IGF receptors (12), the expression of IGF-I by liver and other tissues (46), and the circulating IGF-I concentration (47, 48). Furthermore, the view that ICI 182,780 merely acts to block estrogen stimulated proliferation appears incomplete, given the fact that it inhibits MCF7 proliferation even under estrogen-free conditions (20). Our data suggest that one mechanism by which ICI 182,780 is able to block IGF-I stimulated proliferation is to increase BP-3 to levels higher than those seen in the presence or the absence of estradiol. Regulation of BP-3 levels in the conditioned medium may occur at the transcriptional or translational levels of protein processing, or BP-3 levels may be controlled at the posttranslational level. BP-3 specific proteases have been shown to regulate IGFBP levels in serum (49, 50), tissue extracts (49), and in other biological fluids (50). The possibility exists that estrogens and antiestrogens modulate BP-3 levels, and therefore IGF-I bioactivity, is possible, particularly in the context of the proposal that in vivo, low molecular weight IGFBPs enhance extravascular diffusion of IGFs (24).

The ability of ICI 182,780 to inhibit IGF-I stimulated proliferation in keeping with accumulating evidence suggesting that there are multiple levels at which estrogens and antiestrogens interact with the IGF system. Antiestrogens have been shown not only to modulate IGFBP levels in IGF-responsive cells as reported here, but also to modulate the expression of type I IGF receptors (12), the expression of IGF-I by liver and other tissues (46), and the circulating IGF-I concentration (47, 48). Furthermore, the view that ICI 182,780 merely acts to block estrogen stimulated proliferation appears incomplete, given the fact that it inhibits MCF7 proliferation even under estrogen-free conditions (20). Our data suggest that one mechanism by which ICI 182,780 is able to block IGF-I stimulated proliferation is to increase BP-3 to levels higher than those seen in the presence or the absence of estradiol. Regulation of BP-3 levels in the conditioned medium may occur at the transcriptional or translational levels of protein processing, or BP-3 levels may be controlled at the posttranslational level. BP-3 specific proteases have been shown to regulate IGFBP levels in serum (49, 50), tissue extracts (49), and in other biological fluids (50). The possibility exists that estrogens and antiestrogens modulate BP-3 levels, and therefore IGF-I bioactivity, is possible, particularly in the context of the proposal that in vivo, low molecular weight IGFBPs enhance extravascular diffusion of IGFs (24).

The ability of ICI 182,780 to inhibit IGF-I stimulated proliferation is to increase BP-3 to levels higher than those seen in the presence or the absence of estradiol. Regulation of BP-3 levels in the conditioned medium may occur at the transcriptional or translational levels of protein processing, or BP-3 levels may be controlled at the posttranslational level. BP-3 specific proteases have been shown to regulate IGFBP levels in serum (49, 50), tissue extracts (49), and in other biological fluids (50). The possibility exists that estrogens and antiestrogens modulate BP-3 levels, and therefore IGF-I bioactivity, is possible, particularly in the context of the proposal that in vivo, low molecular weight IGFBPs enhance extravascular diffusion of IGFs (24).

The ability of ICI 182,780 to inhibit IGF-I stimulated proliferation in keeping with accumulating evidence suggesting that there are multiple levels at which estrogens and antiestrogens interact with the IGF system. Antiestrogens have been shown not only to modulate IGFBP levels in IGF-responsive cells as reported here, but also to modulate the expression of type I IGF receptors (12), the expression of IGF-I by liver and other tissues (46), and the circulating IGF-I concentration (47, 48). Furthermore, the view that ICI 182,780 merely acts to block estrogen stimulated proliferation appears incomplete, given the fact that it inhibits MCF7 proliferation even under estrogen-free conditions (20). Our data suggest that one mechanism by which ICI 182,780 is able to block IGF-I stimulated proliferation is to increase BP-3 to levels higher than those seen in the presence or the absence of estradiol. Regulation of BP-3 levels in the conditioned medium may occur at the transcriptional or translational levels of protein processing, or BP-3 levels may be controlled at the posttranslational level. BP-3 specific proteases have been shown to regulate IGFBP levels in serum (49, 50), tissue extracts (49), and in other biological fluids (50). The possibility exists that estrogens and antiestrogens modulate BP-3 levels, and therefore IGF-I bioactivity, is possible, particularly in the context of the proposal that in vivo, low molecular weight IGFBPs enhance extravascular diffusion of IGFs (24).
and a growth enhancing role for BP-4 on the proliferation of MCF7 breast cancer cells.

ACKNOWLEDGMENTS

We thank Alan Wakeling, ICI Pharmaceuticals, Macclesfield, United Kingdom, for his generous gift of ICI 182,780 and Chris Maack, Celltrix Pharmaceuticals, Santa Clara, California, for the antibody to BP-3.

Note Added in Proof

Our observation concerning the positive correlation between IGF-BP4 accumulation and proliferation is of interest in the context of the recent finding that the human gene encoding IGF-BP4 has been mapped to a region of chromosome 17 defined by markers THRA1 and D17S579, which is known to contain the gene for hereditary breast-ovarian cancer (P. Toni, E. Ehrenberg, G. Lenoir, J. Feunteun, H. Lynch, K. Morgan, H. Zazzi, A. Vivier, M. Pollak, H. Huynh, H. Luthman, C. Larsson, and S. Narod. The human IGF-BP4 gene maps to chromosome region 17q12-21.1 and is close to the gene for hereditary breast-ovarian cancer. Genomics, in press, 1993).

REFERENCES

Estrogen and Antiestrogen Modulation of MCF7 Human Breast Cancer Cell Proliferation Is Associated with Specific Alterations in Accumulation of Insulin-like Growth Factor-binding Proteins in Conditioned Media

Susan E. Pratt and Michael N. Pollak

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/53/21/5193

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.