Benzene and Its Phenolic Metabolites Produce Oxidative DNA Damage in HL60 Cells in Vitro and in the Bone Marrow in Vivo

Prema Kolachana, Vangala V. Subrahmanyam,2 Kathleen B. Meyer, Luoping Zhang,3 and Martyn T. Smith4

Department of Biomedical and Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720

ABSTRACT

Benzene, an important industrial chemical, is myelotoxic and leukemogenic in humans. It is metabolized by cytochrome P450 2E1 to various phenolic metabolites which accumulate in the bone marrow. Bone marrow contains high levels of myeloperoxidase which can catalyze the further metabolism of the phenolic metabolites to reactive free radical species. Redox cycling of these free radical species produces active oxygen. This active oxygen may damage cellular DNA (known as oxidative DNA damage) and induce genotoxic effects. Here we report the induction of oxidative DNA damage by benzene and its phenolic metabolites in HL60 cells in vitro and in the bone marrow of C57BL/6 × C3H F1 mice in vivo utilizing 8-hydroxy-2'-deoxyguanosine as a marker. HL60 cells (a human leukemia cell line) contain high levels of myeloperoxidase and were used as an in vitro model system. Exposure of these cells to phenol, hydroquinone, and 1,2,4-benzenetriol resulted in an increased level of oxidative DNA damage. An increase in oxidative DNA damage was also observed in the mouse bone marrow in vivo 1 h after benzene administration. A dose of 200 mg/kg benzene produced a 5-fold increase in the 8-hydroxydeoxyguanosine level. Combinations of phenol, catechol, and hydroquinone also resulted in significant increases in steady state levels of oxidative DNA damage in the mouse bone marrow but were not effective when administered individually. Administration of 1,2,4-benzenetriol alone did, however, result in a significant increase in oxidative DNA damage. This represents the first direct demonstration of active oxygen production by benzene and its phenolic metabolites in vivo. The conversion of benzene to phenolic metabolites and the subsequent production of oxidative DNA damage may therefore play a role in the benzene-induced genotoxicity, myelotoxicity, and leukemia.

INTRODUCTION

Chronic exposure to benzene, an ubiquitous pollutant, induces myelotoxicity and leukemia in humans (reviewed in Ref. 1). However, the precise mechanisms by which benzene induces these effects are not known. Various studies have, however, shown that benzene metabolism is required to exert its myelotoxic effects (reviewed in Refs. 2 and 3). The majority of benzene metabolism occurs in liver, where cytochrome P-450 oxidizes benzene to PH2,2 CAT, HQ, BT, and a ring-opened product called trans,trans-muconaldehyde, which is oxidized to trans,trans-muconic acid. These phenolic metabolites and muconic acid accumulate in the bone marrow (4, 5). MPO and other heme-protein peroxidases present in the bone marrow may further convert the phenolic metabolites of benzene to reactive semiquinones and quinones (6–10). These semiquinones, quinones, and, perhaps, trans,trans-muconaldehyde are generally believed to be the ultimate toxic species derived from benzene.

Benzene and various combinations of its metabolites produce genetic damage, including numerical and structural chromosomal aberrations in bone and blood marrow of exposed animals and humans (11–16). One mechanism by which benzene induces these genotoxic effects may be by generating one or more active oxygen species such as superoxide anion radicals (O2•−), hydrogen peroxide (H2O2), hydroxyl radicals (HO•), and singlet oxygen (1O2) in the bone marrow (6). Active oxygen could be generated by peroxidatic metabolism or autooxidation of phenolic metabolites in the bone marrow (6, 8, 17). Previous in vitro studies have shown that semiquinone radicals formed during the peroxidatic metabolism of HQ can reduce dioxygen to O2•− and have the potential to undergo cyclic reduction and oxidation reactions (redox cycling) to produce large amounts of active oxygen. However, the ability of benzene or its phenolic metabolites to induce the formation of active oxygen in vivo and cause damage to cellular DNA and proteins has not been studied. The primary objective of the present study was to test this hypothesis.

Recently, Kasai and Nishimura (18) and Floyd et al. (19) have shown that active oxygen including HO• and 1O2 can hydroxylate deoxyguanosine residues in DNA resulting in the formation of 8OHdGua. This 8OHdGua can be easily detected by HPLC with electrochemical detection, following enzymatic hydrolysis of DNA. This method has become a useful tool to measure the formation of active oxygen in complex biological systems (such as in vivo situations) where active oxygen cannot be directly detected (20–22). In addition, the detection of 8OHdGua in DNA provides a direct measure of genotoxic effects of active oxygen (20). Therefore, in this study, we have utilized 8OHdGua formation in DNA as a marker for the detection of active oxygen formation. Initial studies were performed in vitro in human myeloid leukemia (HL60) cells by exposing them to the phenolic metabolites of benzene, because these cells contain high levels of MPO (23). Further studies were performed in C57BL/6 × C3H F1 (hereafter called B6C3F1) mice exposed to benzene or its phenolic metabolites. The data show that benzene or its phenolic metabolites produce oxidative DNA damage in vitro in HL60 cells and in vivo in bone marrow (the target organ for benzene) of B6C3F1 mice. This study provides the first direct evidence for the production of active oxygen in vivo by benzene.

MATERIALS AND METHODS

Reagents. Benzene (99.9% pure) was purchased from Aldrich Chemical Co. (Milwaukee, WI), Phenol, hydroquinone, catechol, 1,2,4-benzenetriol, nucleoside P, and alkaline phosphatase (Escherichia coli) were purchased from Sigma Chemical Co. (St. Louis, MO). High purity distilled phenol was purchased from International Biotechnologies, Inc. (New Haven, CT). All other chemicals and solvents were of the highest grade commercially available.

Standard Cell Culture Conditions. HL60 cells obtained from the American Type Culture Collection (Rockville, MD) were cultured in RPMI 1640 supplemented with fetal bovine serum albumin (10%) and gentamicin sulfate (50 μg/ml). Cells were grown in a humidified atmosphere in 5% CO2 and 37°C. Cell viability was determined using trypan blue exclusion in which 200 cells/culture were analyzed. All initial viabilities were greater than 95%.

Received 9/24/92; accepted 12/22/92.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by Grants P42ES04705 and P30ES01896 from the National Institute of Environmental Health Sciences. P. K. and K. B. M. are trainees of the Health Effects Component of the UC Toxic Substances Program. L. Z. is supported by the William and Ada Isbell Steel Memorial Graduate Scholarship from Simon Fraser University, Burnaby, British Columbia, Canada.

2 Present address: Department of Drug Metabolism and Pharmacokinetics, American Cyanamid Company, Pearl River, NY 10965.

3 Permanent address: Bioenergetic Research Laboratory, Faculty of Applied Science, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.

4 To whom requests for reprints should be addressed, at Department of Biomedical and Environmental Health Sciences, School of Public Health, 322-Warren Hall, University of California, Berkeley, CA 94720.

5 The abbreviations used are: PH, phenol; BT, 1,2,4-benzenetriol; CAT, catechol; dGua, deoxyguanosine; HPLC, high pressure liquid chromatography; HQ, hydroquinone; 8OHdGua, 8-hydroxy-2'-deoxyguanosine; MPO, myeloperoxidase; PBS, phosphate-buffered saline; DMSO, dimethyl sulfoxide.

Downloaded from cancerrses.aacrjournals.org on April 13, 2017. © 1993 American Association for Cancer Research.
In Vitro Studies. HL60 cell cultures were preincubated for 0.5 h at 37°C before dosing with various metabolites of benzene. Cells (0.5 × 10⁶/ml) were incubated in PBS (20 ml; pH 7.4) with HQ, PH, CAT, or BT (10–100 μM) up to 1 h. The cells were pelleted by centrifugation (2000 rpm/5 min) and washed twice with PBS prior to DNA extraction.

Assay for MPO Activity in HL60 Cells. Myeloperoxidase activity in HL60 cells was determined using 3,3′-tetramethylbenzidine as a substrate as described previously by Bozeman et al. (24). With this method, we found that HL60 cells contain 74 ± 26 pmol of MPO/10⁶ cells.

In Vivo Studies. Male B6C3F₁ mice (25–30 g, about 6 weeks old) were purchased from Simonsen Laboratories (Gilroy, CA) and housed 1–2 weeks prior to use. Mice were fed standard Purina Rat Chow 5012 and water ad libitum and were maintained in a temperature and photoperiod (12 h/day)-controlled room. The animals were housed 1/cage.

Benzene Studies. Benzene dissolved in corn oil was used for all studies. Time course studies were performed using a single dose (880 mg/kg) of benzene administered i.p. to 4 groups of mice (3 mice/group). Each treatment group had corresponding simultaneous vehicle controls (3 mice/group). All animals were euthanized at 1, 3, 6, or 12 h after treatment by cervical dislocation. Dose-response studies were performed using 6 groups of mice (3 mice/group) given i.p. injections of single doses of 0, 50, 100, 200, 400, or 800 mg/kg of benzene. All animals were euthanized 1 h after treatment by cervical dislocation.

Phenolic Metabolite Studies. Phenolic metabolites of benzene were dissolved in PBS. Nine groups of mice (3 mice/group) were given i.p. injections of PH (75 mg/kg), HQ (75 mg/kg), CAT (75 mg/kg), BT (25, 50, or 75 mg/kg), or a combination of PH + HQ (75 + 75 mg/kg), HQ + CAT (75 + 75 mg/kg) and PH + CAT (75 + 75 mg/kg). An additional group of 3 mice received an equivalent amount of PBS alone. All the chemicals were preweighed and the solutions were prepared immediately before administration to avoid autoxidation. All animals were euthanized 1 h after treatment by cervical dislocation.

Isolation of Bone Marrow Cells. Bone marrow cells were isolated from mouse femurs (9) into 3 ml of ice-cold PBS (pH 7) containing 0.16% (w/v) EDTA. The cells were dispersed by gentle aspiration with a Pasteur pipet, centrifuged at 150 × g for 15 min, and resuspended in the same buffer. Approximately 40–50 × 10⁶ bone marrow cells (pooled from 2 femurs) were harvested from each mouse by this method.

Determination of 8OHdGua in DNA. DNA was isolated from mouse bone marrow and HL60 cells by the phenol extraction procedure of Gupta et al. (25). To avoid any additional oxidative damage to the DNA due to peroxide or quinone contaminants in phenol, high purity double distilled phenol was used for extractions. About 200–400 μg DNA were resuspended in 200 μl 20 mm sodium acetate (pH 4.8), and digested to nucleotides with 20 ug nuclease P1, at 70°C for 15 min. To adjust the pH 20 μl of 1 N Tris-HCl (pH 7.4) were added to the nucleotide mixture, which then was treated with 1.3 units of E. coli alkaline phosphatase and incubated at 37°C for 60 min. These hydrolyzed DNA solutions were then filtered using an Ultrafree Milipore filtration system (10,000-dalton cutoff). The HPLC conditions used in the present study have been described previously (26). Briefly, the amount of 8OHdGua present in the DNA was analyzed by flow-through electrochemical detection using an ESA model 5100 Coulunch detector equipped with a 5011 or 5100 high sensitivity analytical cell with the oxidation potentials of electrodes 1 and 2 adjusted to 0.10 and 0.35 V, respectively. A Supelco LC-18 HPLC column (15 × 4.6 mm) analytical cell with the oxidation potentials of electrodes 1 and 2 adjusted to

RESULTS

Induction of Oxidative DNA Damage by Phenolic Metabolites in Vitro in HL60 Cells

Table 1 shows the effect of different benzene metabolites on the formation of 8OHdGua in the DNA of HL60 cells. HQ (10 μM) induced a 2-fold increase in 8OHdGua levels after 30 min of incubation, while 100 μM PH produced a 3.5-fold increase. The most effective inducer of 8OHdGua formation was BT, a minor metabolite of benzene, which produced a maximum of 5-fold increase in 8OHdGua after 30 min. No significant increase in 8OHdGua levels was observed, even after 1 h incubation, with CAT (100 μM).

Little or no cytotoxicity was observed from exposure to these compounds for at least 6 h (assayed by trypsin blue exclusion test; data not shown), indicating that 8OHdGua formation in these cells does not occur after cell death. In summary, HQ, PH, and BT, but not CAT, induce rapid 8OHdGua formation in HL60 cells that returns to normal levels following further incubation presumably due to the rapid repair of DNA damage.

Oxidative DNA Damage in Vivo in Mouse Bone Marrow following Exposure to Benzene

Time Course. A rapid, 2-fold increase [P < 0.001] in 8OHdGua levels in mouse bone marrow DNA was observed 1 h after benzene administration [880 mg/kg (Fig. 1)]. This increase gradually declined towards background levels after 6 h (P > 0.1) and remained constant through 12 h. As shown in Fig. 1, the vehicle (corn oil) had no observable effect on the steady state levels of 8OHdGua throughout treatment. The maximum oxidative damage by benzene was observed after 1 h, and this time point was therefore chosen for additional studies. These results further show that maximum oxidative damage occurs well before cytotoxicity (none prior to 12 h) (28) and may contribute to but is not a consequence of toxicity.

Dose Response. The effect of different benzene doses on 8OHdGua levels in mouse bone marrow is shown in Fig. 2. A significant increase (P < 0.05) in oxidative DNA damage was observed even with the lowest dose, 50 mg/kg (Fig. 2), reaching a maximum of 5-fold increase (P < 0.001) in 8OHdGua levels at 200 mg/kg. Higher doses of benzene resulted in smaller increases in the 8OHdGua level, about 2.5-fold (P < 0.001) above control levels at 400 mg/kg and only 2-fold (P < 0.001) at 800 mg/kg.

Oxidative DNA Damage in Vivo in Mouse Bone Marrow following Exposure to Phenolic Metabolites of Benzene

When administered alone, PH (75 mg/kg), CAT (75 mg/kg), or HQ (75 mg/kg) had no significant effect on the steady state level of 8OHdGua (Fig. 3), which ranged from 0.045 to 0.053 pmol. Higher doses of benzene resulted in smaller increases in the 8OHdGua level, about 2.5-fold (P < 0.001) above control levels at 400 mg/kg and only 2-fold (P < 0.001) at 800 mg/kg.

Synthesis of 8OHdGua Standard. Standard 8OHdGua was synthesized by Udenfriend’s hydroxylation system as described by Kasai and Nishimura (27). Hydroxylation of dGua at the C-8 position was carried out by sequential addition of 25 μl of 0.1 M dGua, 14 μl of 1 M ascobic acid, 6.5 μl of 1 M EDTA, and 13 μl of 0.13 M FeSO₄ to 0.942 ml of 0.1 M sodium phosphate buffer (pH 6.8) and incubating up to 15 min at 37°C in the dark with vigorous shaking. Following incubation, aliquots of the reaction mixture were analyzed by HPLC. Fractions containing 8OHdGua were collected from HPLC eluates, lyophilized, and stored at 4°C for use as standards.

Statistics. All results are expressed as mean ± SD of at least three experiments. P values for significance were determined using the two-tailed Student’s t test.
OXIDATIVE DNA DAMAGE BY BENZENE AND ITS METABOLITES

(29) This suggests that formation of this hydroxylated base may contribute to the mutagenic and carcinogenic properties of radiation and chemicals that generate active oxygen. Peroxidative metabolism or autoxidation of the phenolic metabolites (PH and HQ) of benzene results in active oxygen generation (6, 8, 17). Here, we report that various phenolic metabolites of benzene increase the steady state level of 8OHdGua in the DNA of human leukemia HL60 cells which contains high levels of MPO (23). Further, we have demonstrated that benzene itself and various combinations of its phenolic metabolites produce increases in the steady-state level of 8OHdGua in the bone marrow of B6C3F1 mice in vivo. These results indicate that activation of the phenolic metabolites of benzene (presumably mediated by MPO) produces active oxygen which is capable of causing oxidative DNA damage. We therefore suggest that oxidative damage to DNA may play a role in benzene-induced genotoxicity, myelotoxicity, and leukemia.

Fig. 1. Time course of benzene-induced oxidative DNA damage in vivo in the bone marrow of B6C3F1 mice. Benzene was administered in corn oil at 880 mg/kg. Control mice were given corn oil alone. a, P > 0.05, not significantly different from corresponding corn oil controls; b, P < 0.001, significantly different from 1-h corn oil controls; c, P < 0.05, significantly different from 3-h corn oil controls.

Other investigators have previously proposed that oxygen radicals play an important role in benzene toxicity. For example, Anwar et al. (30) showed that DMSO, a hydroxyl radical scavenger, inhibits benzene-induced genotoxicity in mice. However, it should be noted that DMSO interacts with hepatic cytochrome P-450 enzymes including

mg/kg) + CAT (75 mg/kg) was less effective, producing only a slight but significant (P < 0.01) increase in the 8OHdGua level. No significant effect on 8OHdGua levels was observed in control mice treated with PBS alone (Fig. 3).

1,2,4-Benzotriol, a minor but highly reactive phenolic metabolite of benzene, also elicited a significant, 2.5-fold increase (P < 0.001) in 8OHdGua levels in vivo in mouse bone marrow when administered at 25 mg/kg (Fig. 4). Thus, BT is the only phenolic benzene metabolite which induced oxidative DNA damage in the mouse bone marrow when administered alone. Treatment with BT at 50 and 75 mg/kg resulted in smaller increases in 8OHdGua. This effect is similar to that observed with benzene, where higher doses of benzene resulted in only small increases of 8OHdGua in DNA (Fig. 2).

DISCUSSION

8OHdGua is the most abundant product of oxidative damage to DNA by active oxygen and induces G-T and A-C base substitutions

Fig. 2. Dose response for benzene-induced oxidative DNA damage in the bone marrow of B6C3F1 mice. a, P < 0.05; b, P < 0.01; c, P < 0.001; d, P < 0.001; e, P < 0.001; significantly different from corn oil controls.

Fig. 3. Induction of oxidative DNA damage by the benzene metabolites, phenol, hydroquinone, and catechol in vivo in the bone marrow of B6C3F1 mice. Metabolites were administered in PBS at 75 mg/kg. Controls received PBS alone. a, P > 0.05, not significantly different from PBS controls; b, P < 0.01, significantly different from phenol or hydroquinone; c, P < 0.01, significantly different from phenol or catechol; d, P < 0.01, significantly different from hydroquinone or catechol.

Fig. 4. Induction of oxidative DNA damage in vivo in bone marrow of B6C3F1 mice by 1,2,4-benzenetriol, a minor metabolite of benzene. a, P < 0.001, significantly different from PBS controls.
benzene and phenol hydroxylase and cytochrome P450 3a (2E1) (31). Altered metabolism rather than radical scavenging may therefore explain the inhibitory effect of DMSO on the genotoxic effects of benzene. In addition, recent studies by Khan et al. (32) and Laskin et al. (33) claimed to have shown the production of active oxygen in vivo following benzene administration to rats. However, the detection of active oxygen in these studies was performed following in vitro stimulation with NADPH/iron (32) and tetraedencainolphlor acetate (33) (a nonphysiological stimulant) of bone marrow microsomes and macrophages, respectively, isolated from animals exposed to benzene or its phenolic metabolites. Therefore, the data presented in this paper represent the first direct demonstration of active oxygen formation in bone marrow following benzene administration.

Our studies show that the administration of benzene causes a significant increase in 8OHdGua levels in the mouse bone marrow after only 1 h of administration. Interestingly, none of the primary phenolic metabolites of benzene, i.e., PH, HQ, and CAT, were able to induce any change in 8OHdGua levels in the bone marrow when administered alone. However, the administration of BT, a minor phenolic metabolite of benzene, induced a significant increase in 8OHdGua formation in the bone marrow. Interestingly, recent studies by Rao et al. (34), have shown that the repeated administration of BT alone to rats for 6 weeks results in myelotoxic effects. BT may, therefore, play some role in benzene toxicity.

There is growing evidence that multiple metabolites play a role in benzene toxicity. For example, Eastmond et al. (35) showed that a combination of PH + HQ, each at 75 mg/kg, could reproduce the myelotoxic effects observed following benzene exposure in B6C3F1 mice. Barale et al. (16) have recently shown that the combination of PH and HQ is also highly genotoxic to the mouse bone marrow. Results presented here show that the administration of various combinations of primary phenolic metabolites (at 75 mg/kg each) significantly increases the 8OHdGua level in the mouse bone marrow. PH + HQ was the most effective of the combinations tested, but PH + CAT and CAT + HQ also significantly increased 8OHdGua levels. These results add further weight to the hypothesis that benzene toxicity is caused by multiple metabolites (15, 16, 35). Moreover, since 8OHdGua has been shown to be mutagenic (20, 29) we propose that the genotoxic, myelotoxic, and leukemogenic effects of benzene may be caused at least in part by active oxygen-induced cell damage.

ACKNOWLEDGMENTS

We are grateful to Drs. Bruce Ames and Mark Shigenaga for their advice and for allowing us to use their HPLC systems for our preliminary experiments with HL60 cells.

REFERENCES

Benzene and Its Phenolic Metabolites Produce Oxidative DNA Damage in HL60 Cells *in Vitro* and in the Bone Marrow *in Vivo*

Prema Kolachana, Vangala V. Subrahmanyam, Kathleen B. Meyer, et al.

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/53/5/1023

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.