Tumor Necrosis Factor α as an Autocrine and Paracrine Growth Factor for Ovarian Cancer: Monokine Induction of Tumor Cell Proliferation and Tumor Necrosis Factor α Expression

S. Wu, C. M. Boyer, R. S. Whitaker, A. Berchuck, J. R. Wiener, J. B. Weinberg, and R. C. Bast, Jr.

ABSTRACT

Ovarian tumor cells produce macrophage colony stimulating factor, a potent chemoattractant for monocytes. Monocytes and macrophages produce tumor necrosis factor α (TNF-α) and interleukin 1α or interleukin 1β (IL-1β) that can stimulate ovarian tumor cell growth. The present study has explored whether paracrine stimulation by monocyte derived cytokines might induce autocrine growth stimulation of normal and malignant ovarian epithelial cells. Endogenous expression of TNF-α mRNA was detected in ascites ovarian cancer cells isolated directly from patients, but not in established cultures of normal or malignant ovarian epithelial cells. When ascites tumor cells were cultured for 7 days, TNF-α expression ceased but could be reinduced by treatment with TNF-α or IL-1β. Ascites fluid contained concentrations of the cytokines that could mediate these effects. Similarly, treatment of normal or malignant ovarian epithelial cells with purified recombinant IL-1β or TNF-α induced transcription of TNF-α mRNA within 1 h. TNF-α protein could be detected by enzyme-linked immunosorbent assay in conditioned medium from IL-1β treated ovarian cancer cells. [3H]thymidine incorporation by normal or malignant ovarian epithelial cells was stimulated by a 24-h incubation with IL-1β or TNF-α. Stimulation of proliferation by IL-1β could be partially blocked by an antibody against TNF-α or by soluble TNF-α receptor. Thus, TNF-α may function as both an autocrine and a paracrine growth factor in ovarian cancer.

INTRODUCTION

TNF-α1 and IL-1 are cytokines produced primarily by monocytes and macrophages. TNF-α and IL-1 share several biological activities, despite the fact that they are structurally unrelated and bind to different cell surface receptors (1, 2). Both TNF-α and IL-1 can inhibit the growth of certain tumor cells (3–5), stimulate human fibroblast proliferation, promote bone reabsorption by osteoclasts, down-regulate lipogenic gene expression, and stimulate the production of collagenase in synovial cells (6). Conversely, TNF-α and IL-1 can also stimulate the growth of normal cells as well as certain cancer cells in culture (6, 7). Since TNF-α can be constitutively produced by malignant cells (8), its expression could contribute to tumor progression and spread (9, 10) as well as indicate resistance to the cytotoxicity of exogenous TNF-α (11).

Ovarian cancer is the leading cause of death from gynecological malignancy. Over 60% of patients present with disease that has spread beyond the pelvis and into the peritoneal cavity (12). Although metastatic disease can be treated with cytoreductive surgery and combination chemotherapy, the survival of these patients is poor. Recent studies have focused on factors that regulate the growth of malignant ovarian epithelium (13), with the expectation that a more fundamental understanding of these factors might suggest novel and potentially more effective approaches to treatment.

Macrophages are found in solid tumor implants of ovarian cancer as well as in ascites fluid (14, 15). Previous studies have indicated that ovarian cancer cells produce macrophage colony stimulating factor which is a potent chemoattractant for monocytes (16–18). Monocyte derived cytokines including TNF-α, IL-1, and interleukin 6 can stimulate proliferation of ovarian cancer cells (7). Other investigators have shown that ovarian and other cancer cells express TNF-α in vitro and in vivo (8, 19, 20). Whether or not endogenous expression of TNF-α is important for growth of ovarian cancer cells remains to be resolved.

In this article, we have explored the possibility that endogenous expression of TNF-α is maintained in vivo by exogenous TNF-α or IL-1 and that endogenous production of TNF-α may trigger tumor cell proliferation.

MATERIALS AND METHODS

Cytokines, Anti-Cytokine Antibodies, and DNA Probes. Human recombinant TNF-α (2 × 10⁷ units/mg) was purchased from Genzyme (Boston, MA). Human recombinant IL-1β (5 × 10⁶ units/mg) and human recombinant IL-1α (5 × 10⁶ units/mg) were purchased from R&D Systems (Minneapolis, MN). Murine anti-human TNF-α monoclonal antibody was purchased from Endogen, Inc. (Boston, MA). Soluble TNF-α receptor (TNF-BP 1) was purchased from R&D Systems. A cDNA probe for human TNF-α in plasmid pCDV1 was purchased from the American Type Culture Collection (Bethesda, MD).

Cell Cultures. Four ovarian cancer cell lines, OVCA 420, OVCA 429, OVCA 432, and OVCA 433, were established from ascites tumor cells of ovarian cancer patients (21). The cells were grown in Eagle’s minimal essential medium that was supplemented with 10% FBS, 2 mM l-glutamine, 100 units/ml penicillin, 100 μg/ml streptomycin, 1 mM sodium pyruvate, and 1% nonessential amino acid mixture. The ovarian cancer cell line SKOV3 was obtained from the American Type Culture Collection. SKOV3 cells were cultured in McCoy’s medium containing 15% FBS, 2 mM l-glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin. The OVCAR-3 cell line was obtained from Dr. Thomas C. Hamilton and was cultured in RPMI 1640 containing 15% FBS, 2 mM l-glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin. Four cultures of normal surface ovarian epithelial cells N-OSE 006R, N-OSE 007L, N-OSE 038L, and N-OSE 039R were established in our laboratory as described previously (22). The epithelial origin of the cultured cells was confirmed by immunocytochemical detection of cytokeratins and the identification of characteristic structures was confirmed by electron microscopy. Cells were grown in medium containing equal volumes of MCDB 105 and medium 199 supplemented with 15% FBS, 2 mM l-glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin. Medium was changed every 3 days and the cells were subcultured once a week. For subculture and experiments, monolayers were detached with 0.25% trypsin-0.02% EDTA.

Separation of Tumor Cells from Ascites. Ascites fluid was obtained from ovarian cancer patients at the time of surgery. The cells were pelleted by centrifugation, frozen in 10% dimethyl sulfoxide, and stored in the vapor phase of liquid nitrogen. For each experiment, cells were thawed, resuspended in HBSS, and separated on Percoll (Pharmacia, Piscataway, NJ) density gradients. After centrifugation at 1500 rpm for 20 min at room temperature, fractions were collected and washed 3 times with HBSS. Cells were incubated with mouse monoclonal antibodies reactive with ovarian tumor associated antigens including 317G5, 260F9, BT8FF1, and BT4Z4 for 1 h at 4°C. Cells were washed 3 times with HBSS and incubated with goat anti-mouse immunoglobulins...
TNF-α AS A GROWTH FACTOR FOR OVARIAN CANCER

TNF-α expression in ascites tumor cells, ovarian cancer cell lines, and normal ovarian epithelial cells. A [32P]-labeled human TNF-α cDNA probe was hybridized with total cellular RNAs from 4 normal ovarian epithelial cell lines, 5 ovarian cancer cell lines, and 4 preparations of ovarian cancer cells isolated directly from ascites fluid. TNF-α expression was seen in all four highly purified ascites tumor cell preparations, but not in any of the normal or malignant ovarian epithelial cell lines (Fig. 1).
Loss and Reinduction of TNF-α in Ascites Tumor Cells by TNF-α or IL-1β. Since TNF-α expression was observed in ovarian cancer cells from ascites, but not in ovarian cancer cell lines, we tested the possibility that TNF-α expression might be lost in cell culture. After 7 days in culture, expression of TNF-α was no longer observed in OVCA 189 cells that had expressed TNF-α when first isolated (Fig. 2). Expression of TNF-α could, however, be reinduced by treatment either with TNF-α or IL-1β (Fig. 2).

Concentrations of TNF-α, IL-1α, and IL-1β in Ascites Fluid. Ascites fluids were obtained from the same patients who had donated tumor cells. When TNF-α, IL-1α, and IL-1β were assayed, the concentration of TNF-α was from 116-1450 pg/ml, comparable to concentrations of TNF-α required to induce endogenous production of TNF-α by ovarian cancer cells (Table 1). IL-1β could not be detected in ascites fluid, but IL-1α concentrations ranged from 2 to 14 pg/ml.

Induction of TNF-α in Normal and Malignant Ovarian Epithelial Cells. When ovarian cancer cell lines were treated with TNF-α or IL-1β, induction of TNF-α mRNA occurred after 1 h treatment with either cytokine. The induction of TNF-α mRNA depended on the concentration of cytokines and the duration of treatment. TNF-α mRNA levels reached a maximum after 1–2 h of treatment with IL-1β or TNF-α and subsequently declined (Fig. 3). Similar kinetics were observed after treatment with IL-1α (data not shown). As little as 0.01 ng/ml IL-1β induced TNF-α expression, whereas 0.1 ng/ml TNF-α was required to induce detectable endogenous expression of TNF-α (Fig. 4). Similar induction of TNF-α could be achieved with normal ovarian cell cultures and with several other ovarian cancer cell lines including OVCA 420, OVCA 429, OVCA 433, OVCAR3, and SK-Ov3.

Table 1: Concentration of TNF-α in the ascites fluid of ovarian cancer patients

<table>
<thead>
<tr>
<th>Ascites fluid</th>
<th>TNF-α (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVCA 34</td>
<td>1450.0 ± 118.4*</td>
</tr>
<tr>
<td>OVCA 87</td>
<td>329.1 ± 123.7</td>
</tr>
<tr>
<td>OVCA 93</td>
<td>156.1 ± 32.9</td>
</tr>
<tr>
<td>OVCA 119</td>
<td>116.0 ± 13.0</td>
</tr>
<tr>
<td>OVCA 189</td>
<td>171.2 ± 14.2</td>
</tr>
</tbody>
</table>

* Mean ± SD determined by ELISA.

Stimulation of [³H]Thymidine Incorporation by TNF-α and IL-1β. In an earlier study we had shown that treatment for 24 h with TNF-α or IL-1 could stimulate a dose dependent increase in [³H]thymidine incorporation and cell number by ovarian cancer cell lines. Around a 30–200% increase in proliferation by these parameters was observed in sensitive cell lines including OVCA 429 (7), OVCA 432 (7), OVCA 433 (7), OVCAR-3, and SK-Ov3 (Table 3). In the present study we have determined whether TNF-α or IL-1β could stimulate proliferation of normal ovarian epithelial cells. After treatment for 24 h with IL-1β, or TNF-α, increased [³H]thymidine incorporation was observed in normal ovarian epithelial cells (Fig. 6).
y-actin (1:50) and by 92% with soluble TNF-a receptor (Fig. 7, A and B). More definitive data could be obtained by blocking IL-1ß induced stimulation of pHl thymidine incorporation. Consistent with the possibility that endogenous expression of TNF-a might be a critical factor triggering tumor cell proliferation, blocking studies were performed in two separate experiments with anti-TNF-a antibody (Fig. 7A) and TNF-a receptor (Fig. 7B). TNF-a mediated stimulation of [3H]thymidine incorporation by ovarian cancer cell line OVCA 432 could be blocked with anti-TNF-a antibody (Fig. 7A) or TNF-a receptor (Fig. 7B). TNF-a induced stimulation was inhibited by 80% with anti-TNF-a antibody (1:50) and by 60% with soluble TNF-a receptor. In this experiment, blocking of proliferation could relate to neutralization either of TNF-a added to the cultures or of TNF-a produced endogenously and released into the culture medium. More definitive data could be obtained by blocking IL-1ß induced stimulation of [3H]thymidine incorporation. Consistent with the possibility that endogenous production of TNF-a was linked to cell proliferation, IL-1ß induced stimulation was inhibited by 53% with anti-TNF-a antibody (1:50) and by 92% with soluble TNF-a receptor (Fig. 7, A and B).

Blocking of TNF-a or IL-1ß Induced [3H]Thymidine Incorporation with Anti-TNF-a Antibody or Soluble TNF-a Receptor. Since IL-1ß could stimulate proliferation of ovarian cancer cells as well as induce TNF-a expression, we have evaluated the possibility that TNF-a could act as an autocrine growth factor. To test whether endogenous expression of TNF-a might be a critical factor triggering tumor cell proliferation, blocking studies were performed in two separate experiments with anti-TNF-a antibody (Fig. 7A) and TNF-a receptor (Fig. 7B). TNF-a mediated stimulation of [3H]thymidine incorporation by ovarian cancer cell line OVCA 432 could be blocked with anti-TNF-a antibody (Fig. 7A) or TNF-a receptor (Fig. 7B). TNF-a induced stimulation was inhibited by 80% with anti-TNF-a antibody (1:50) and by 60% with soluble TNF-a receptor. In this experiment, blocking of proliferation could relate to neutralization either of TNF-a added to the cultures or of TNF-a produced endogenously and released into the culture medium. More definitive data could be obtained by blocking IL-1ß induced stimulation of [3H]thymidine incorporation. Consistent with the possibility that endogenous production of TNF-a was linked to cell proliferation, IL-1ß induced stimulation was inhibited by 53% with anti-TNF-a antibody (1:50) and by 92% with soluble TNF-a receptor (Fig. 7, A and B).

Our studies support the possibility that TNF-a acts as both a paracrine and an autocrine growth factor for normal and malignant ovarian epithelium. Ovarian cancer cells produce macrophage colony stimulating factor, a potent chemotaxant for mononuclear phagocytes. Macrophages are associated with ovarian cancer cells both in ascites fluid (15) and in solid tumors (14, 15). Cytokines produced by macrophages, including IL-1, interleukin 6, and TNF-a can stimulate proliferation of ovarian cancer cells (7). Significant levels of TNF-a have been found in the plasma of certain cancer patients (24). Ascites fluid from the patients in our study all contained detectable TNF protein ranging from 116 to 1450 pg/ml. Although IL-1ß could not be detected, IL-1α levels ranged from 2 to 14 pg/ml. Since we tested only 5 ovarian cancer patient ascites fluids for IL-1, it is possible that other patients may have detectable levels of IL-1. Continued exposure to these cytokines may be important not only for proliferation, but also for endogenous expression of TNF-a.

Our study confirms earlier observations that ovarian cancer cells can express TNF-a both in vitro and in vivo (8, 19). In one study, TNF-a was found in tumor cells from 4 of 5 ascites and in 16 of 20 tissue sections (19). TNF-a or TNF-a-like molecules were also produced by some tumor cell lines in vitro (8), but the expression of TNF-a was not constitutive and the endogenous production of TNF could be induced by exogenous TNF-a. In our present report, each of 5 tumor cell preparations from ascites expressed TNF-a, but TNF-a expression was lost during 7 days of incubation in culture. Endogenous expression of TNF-a could be reinduced by treatment with TNF-a or with IL-1ß. Although many of the experiments in our present report have been performed with IL-1ß, IL-1α has stimulated proliferation of ovarian tumor cell lines (7) and can induce TNF-a with kinetics similar to those produced by IL-1ß. Expression of TNF-a by ovarian cancer cell lines was induced by TNF-a or IL-1 in a time and dose dependent manner. Higher levels of TNF-a mRNA resulted from increased transcription judged by nuclear run-on assays.

Table 2 Concentration of TNF-a in the supernatants of TNF-a or IL-1 treated OVCA 432 ovarian cancer cells

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control</th>
<th>TNF-a (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

DISCUSSION

Fig. 4. Effect of IL-1ß and TNF-a on the expression of TNF-a in OVCA 432 ovarian cancer cells. OVCA 432 cells were treated with different concentrations of IL-1ß or TNF-a for 1 h. Total cellular RNA (20 μg/lane) was transferred and hybridized with 32P-labeled cDNA probes for human TNF-a and γ-actin.

Fig. 5. Nuclear run-on assays of TNF-a transcription in OVCA 432 ovarian cancer cells treated with IL-1ß or TNF-a. Nuclei were harvested without treatment (Lane 1) or after treatment with 1 ng/ml of TNF-a for 10 min (Lane 2) or 1 h (Lane 3) or with 1 ng/ml of IL-1ß for 10 min (Lane 4) or 1 h (Lane 5). Nascent mRNA was radiolabeled and hybridized with nylon membranes prepared with equal amounts of cDNA for human TNF-a and γ-actin. Intensity ratios: 0.2 (Lane 1); 0.3 (Lane 2); 0.9 (Lane 3); 0.4 (Lane 4); 1.0 (Lane 5).
The expression of TNF-α mRNA was also accompanied by translation of TNF-α protein since the supernatants of IL-1 treated cultures contained TNF-α that could be detected by ELISA.

Endogenous expression of TNF-α may contribute to the proliferative activity of exogenous TNF-α or IL-1β. When IL-1β was used to stimulate proliferation and to induce TNF-α, the growth stimulating activity of IL-1β was partially blocked by monoclonal anti-TNF-α antibodies or soluble TNF receptor. Failure to block IL-1β-induced proliferation completely may relate to several factors. (a) The concentration of anti-TNF-α-antibody might be insufficient to neutralize the high levels of TNF induced by IL-1. The concentrations of antibodies and receptors used could neutralize approximately 1 ng/ml of TNF-α. (b) Intracellular TNF-α might provide a mitogenic signal. The anti-TNF-α antibodies and receptors can probably neutralize only extracellular TNF-α. TNF has exerted a mitogenic effect after micro-injection into macrophages (25). (c) IL-1 could also act through pathway(s) that do not utilize TNF-α to mediate cell growth (26). Taken together, however, our data suggest that TNF-α might act through autocrine as well as paracrine pathways to stimulate rather than to inhibit ovarian cancer growth.

The ability to respond to TNF-α or IL-1 might be acquired by ovarian tumor cells during malignant transformation or might simply reflect the physiological response of the normal ovarian surface epithelial cells from which these tumors are derived. In our present study, TNF-α and IL-1β significantly stimulated proliferation of normal ovarian epithelial cells in culture. Both IL-1α and IL-1β are expressed by human ovarian granulosa cells obtained from preovulatory follicular aspirates (27). IL-1 has also been detected in follicular fluid and might provide a critical signal to stimulate the focal proliferation of ovarian epithelium at the time of ovulation, facilitating repair of the defect produced when the follicle ruptures.

Several clinical trials have been conducted using TNF-α to treat ovarian cancer (28, 29). The clinical efficacy of TNF-α appears to be poor with an overall response rate of <5% (28). A poor response rate may relate to the innate resistance of ovarian tumor cells to TNF-α mediated cytotoxicity. Endogenous expression of TNF-α has correlated with resistance to the cytotoxic effects of TNF-α in some tumor cells (11). Given the technical difficulties in monitoring ovarian tumor growth within clinical trials, it is also possible that treatment with the cytokine might have actually accelerated tumor growth in some patients. Conversely, strategies to inhibit TNF-α expression and activity might provide a novel approach to treatment of at least some ovarian cancer patients.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the excellent secretarial assistance of Linda Coyle and Lisa Hilliard and the bibliographical assistance of Peggy Haythorn.

REFERENCES

TNF-α AS A GROWTH FACTOR FOR OVARIAN CANCER

Tumor Necrosis Factor α as an Autocrine and Paracrine Growth Factor for Ovarian Cancer: Monokine Induction of Tumor Cell Proliferation and Tumor Necrosis Factor α Expression

S. Wu, C. M. Boyer, R. S. Whitaker, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/53/8/1939

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.