G_{D3} Vaccines for Melanoma: Superior Immunogenicity of Keyhole Limpet Hemocyanin Conjugate Vaccines

Friedhelm Helling, Ann Shang, Michele Calves, Shengle Zhang, Shunlin Ren, Robert K. Yu, Herbert F. Oettgen, and Philip O. Livingston

ABSTRACT

Cell surface gangliosides show altered patterns of expression as a consequence of malignant transformation and have therefore been of interest as potential targets for immunotherapy, including vaccine construction. One obstacle has been that some of the gangliosides that are overexpressed in human cancers are poorly immunogenic in humans. A case in point is GD3, a prominent ganglioside of human malignant melanoma. Using an approach that has been effective in the construction of bacterial carbohydrate vaccines, we have succeeded in increasing the immunogenicity of GD3 in the mouse by conjugating the ganglioside with immunogenic carriers. Several conjugation methods were used. The optimal procedure involved ozone cleavage of the double bond of GD3 in the ceramide backbone, introducing an aldehyde group, and coupling to aminals of proteins by reductive amination. Conjugates were constructed with a synthetic multiple antigenic peptide expressing repeats of a malarial T-cell epitope, outer membrane proteins of Neisseria meningitidis, cationized bovine serum albumin, keyhole limpet hemocyanin, and polystyrene. Mice immunized with these conjugates showed a stronger antibody response to GD3 than mice immunized with unconjugated GD3. The strongest response was observed in mice immunized with the keyhole limpet hemocyanin conjugate of the GD3 aldehyde derivative and the adjuvant QS-21. These mice showed not only a long-lasting high-titer IgM response but also a consistent high-titer IgG response (predominantly IgG1), indicating recruitment of T-cell help, although the titers of IgM and IgG antibodies following booster immunizations were not as high as they are in the response to classical T-cell-dependent antigens. This method is applicable to other gangliosides, and it may be useful in the construction of immunogenic ganglioside vaccines for the immunotherapy of human cancers expressing gangliosides on their cell surface.

INTRODUCTION

Gangliosides are glycolipid constituents of the cell membrane. The term was coined in 1942 to refer to lipids of the central nervous system that contained sialic acid, to signify their prime location in ganglion cells and their glycosidic nature (1). Their lipophilic component, the ceramide (an amide-linked long-chain sphingoid base and a fatty acid), is thought to be embedded in the outer membrane of the cell membrane lipid bilayer. The carbohydrate portion of the molecule is oriented toward the outside of the cell. Malignant transformation appears to activate enzymes involved in ganglioside glycosylation, resulting in altered patterns of ganglioside expression in tumors such as astrocytoma, neuroblastoma, and malignant melanoma (2). In normal melanocytes, for example, the predominant ganglioside is G_{M3}. Other gangliosides including G_{D3}, G_{M2}, G_{D1a}, and G_{T1b} constitute less than 10% of the total (3). In malignant melanoma, increased expression of G_{D3}, G_{D2}, and G_{M2} has been observed (4, 5), and these gangliosides have therefore been considered potential targets for immunotherapy.

One approach to ganglioside-targeted immunotherapy has been the use of mAbs. Treatment of patients with melanoma or neuroblastoma with mAb recognizing G_{D3}, G_{D2}, or G_{M2} has resulted in tumor regression in some cases (6–9). The other approach has been to immunize patients with ganglioside vaccines in attempts to induce production of ganglioside antibodies by the patients themselves. These attempts have been successful so far only with G_{M2} vaccines. Patients with American Joint Committee on Cancer Stage III malignant melanoma, after complete resection of all tumor, have been shown to produce anti-G_{M2} antibodies in response to vaccination with G_{M2} and Bacillus Calmette-Guerin (after pretreatment with low-dose cyclophosphamide to reduce suppressor activity), and the disease-free interval and overall survival were longer in patients producing G_{M2} antibodies (10). G_{D3} and G_{D2}, on the other hand, were found to be only rarely immunogenic when administered in the same way to patients with melanoma (11). Even with the G_{M2} vaccines, the antibody response showed the characteristics of a T-cell-independent response, that is to say, IgM production of short duration, rare conversion to IgG production, and lack of a booster effect (12, 13).

Similar difficulties have been encountered in the development of effective vaccines against bacterial carbohydrate antigens. One approach that has been successful in overcoming these problems is conjugation of the antigen with immunogenic protein carriers. For example, a conjugate vaccine that links the Haemophilus influenzae type b capsular polysaccharide to the outer-membrane protein complex of Neisseria meningitidis serogroup B was recently shown to induce the production of antibodies and a high rate of protection against invasive disease caused by Haemophilus influenzae type b in infants (14), and similar results were reported for a conjugate vaccine using a nontoxic mutant diphtheria toxin as carrier (15).

We have explored this approach in attempts to increase the immunogenicity of melanoma gangliosides. We report here the effects of conjugating G_{D3} with several protein carriers on its immunogenicity in the mouse.

MATERIALS AND METHODS

Gangliosides. G_{M3}, G_{M2} and G_{D1b}, extracted from bovine brain, were provided by Fidia Research Laboratory (Abano Terme, Italy). G_{D2b} was made from G_{D2b} by enzymatic cleavage with β-galactosidase from bovine testes (16). G₀₃ (mel) was isolated from human melanoma tissue (17), G₀₃ (bbm) and GT3 were isolated from bovine buttermilk (18), and disialyllactose (G₀₃ oligosaccharide) was isolated from bovine colostrum as previously described (19). Reagents. HPTLC silica gel plates were obtained from E. Merck (Darmstadt, Germany); 4-chloro-1-naphthol, p-nitrophenyl phosphate disodium, and sodium cyanoborohydride were from Sigma Chemical Co. (St. Louis, MO).

* The abbreviations used are: mAb, monoclonal antibody; MAP, multiple antigenic peptide; OMP, outer membrane protein; cBSA, cationized bovine serum albumin; ITLC, immune thin-layer chromatography; HPTLC, high-performance thin-layer chromatography; ELISA, enzyme-linked immunosorbent assays; FACS, fluorescence-activated cell sorter; PBS, phosphate-buffered saline; bbm, bovine buttermilk.
methylsulfide was from Aldrich (Milwaukee, WI); cyclophosphamide (Cytoxan) was from Mead Johnson (Syracuse, NY); and QS-21 adjuvant, a homogenous saponin component purified from *Quillaja saponaria* Molina tree (20), was kindly donated by Cambridge Biotech Corp. (Worcester, MA). It is an amphiphatic molecule and was provided as a white powder, forming a clear colorless solution when dissolved in PBS.

Proteins. Poly-l-lysine hydrobromide [MW(vis)3800] was purchased from Sigma, keyhole limpet hemocyanin (KLH) was from Calbiochem (La Jolla, CA), the cBSA-Imject Supercarrier immune modulator was from Pierce (Rockfort, IL), and *Nesertia meningitidis* OMPS were kindly provided by Dr. M. S. Blake (Rockefeller University, New York). MAP YAL-IV 294-I containing four repeats of a malarial T-cell epitope was a gift from Dr. J. P. Tam (Rockefeller University).

Monoclonal Antibodies. Rabbit anti-mouse immunoglobulins conjugated to horseradish peroxidase for ITLC, and rabbit anti-mouse IgM and IgG conjugated to alkaline phosphatase for ELISAs, were obtained from Zymed (San Francisco, CA); anti-GD3 mAb R24 was generated in our laboratory (21).

Serological Assays. ELISA were performed as previously described (13). To control for nonspecific “stickiness,” immune sera were also tested on plates to which no ganglioside had been added, and the reading was subtracted from the value obtained in the presence of ganglioside. The titer was defined as the highest dilution yielding a corrected absorbance of 0.1 or greater. Immunostaining of gangliosides with mAb or mouse sera was performed after separation on HPTLC silica gel glass plates as previously described (4). Plates were developed in solvent 1 [chloroform:methanol:water (0.25% CaCl₂), 50:40:10 (v/v/v)] or solvent 2 [ethanol-n-butylalcohol:pyridine:water:acetic acid, 100:10:30:3 (v/v/v)], and gangliosides were visualized with resorcinol-HCl reagent. Dot-blot immune stains were performed on nitrocellulose strips utilizing purified gangliosides spotted in equal amounts and developed as described before (13).

Immunization. Six-week-old female BALB/c × C57BL/6 F₁ mice (The Jackson Laboratory, Bar Harbor, ME) were given an i.p. injection of cyclophosphamide (15 mg/kg) 3 days before the first immunization and were then assigned to treatment groups. Groups of 4 or 5 mice were given three s.c. injections of a vaccine 2 weeks apart if not otherwise indicated. Each vaccine contained 20 μg GD₃ or 15 μg disialyllactose and 10 μg QS-21 in a total volume of 0.1 ml PBS. Mice were bled from the retroorbital sinus before vaccination and 2 weeks after the last vaccine injection unless indicated otherwise.

GD₃ Conjugate Preparation. GD₃ (2 mg) was dissolved in 2 ml methanol by sonication and cooled to –78°C in an ethanol/dry ice bath. Ozone was generated in an oxygen generator (Del Industries, San Luis Obispo, CA) and was passed through the sample for 30 min under vigorous stirring (22, 23). The excess of ozone was then displaced with nitrogen over a period of 10 min. Methylsulfide (100 μl) was added (24), and the sample was kept at –78°C for 30 min and then at room temperature for 90 min under vigorous stirring. The sample was dried under a stream of nitrogen and monitored by HPTLC. The long-chain aldehyde was separated by adding n-hexane (2 ml) to the dry sample, followed by sonication for 5 min and centrifugation at 3000 × g for 15 min. The n-hexane was carefully drawn off and discarded, and the sample was dried under a stream of nitrogen. Cleaved GD₃ and native GD₃ were separated by HPLC (Waters, System 501, Milford, MA) utilizing a C₁₈ reversed-phase column (10 × 250 mm; Rainin Instruments, Ridgefield, NJ). Gangliosides were eluted with a linear water-acetonitrile gradient and monitored at 214 nm, and the fractions were analyzed by HPTLC. Fractionsof the sample contained cleaved GD₃ were combined and evaporated at 37°C with a Rotavapor (Büchi, Flawil, Switzerland). Cleaved GD₃ (1.5 mg), 1.5 mg protein carrier in PBS, and 2 mg sodium cyanoborohydride were incubated under gentle agitation at 37°C for 48 h. After 16 h 1 mg sodium cyanoborohydride was added. The progress of coupling was monitored by HPTLC. GD₃-protein conjugates did not migrate in solvent 1 and solvent 2 but remained at the origin, with the exception of GD₃ that was a resorcinol-positive band in solvent 1 and solvent 2 but remained at the origin, with the exception of GD₃ that was a resorcinol-positive band.

Disialyllactose Conjugate Preparation. Disialyllactose was isolated from bovine colostrum as described previously (19). The carbohydrate was attached to protein by reductive amination (26). Disialyllactose (10 mg) was incubated with 2 mg proteins in 2 ml PBS for 14 days at 37°C after sterile filtration. Sodium cyanoborohydride (2 mg) was added at the beginning, and 1 mg was added every 3 days. The coupling was monitored by HPTLC in solvent 2. The disialyllactose conjugates were purified by dialysis across 5000 molecular weight cutoff dialysis membrane with three changes of PBS (4 liters each) at 4°C for 48 h, followed by lyophilization. The protein and neuraminic acid content was determined as described above. Disialyllactose was also conjugated to proteins according to the method described by Roy and Laffont (27).

RESULTS

Preparation and Characterization of GD₃-Protein Conjugates. GD₃ (bmm) in methanol was selectively cleaved with ozone at the C₄-C₅ double bond in the ceramide portion. It is assumed that methoxypropiolates are formed as intermediate products (24), and therefore methylsulfide was added as a reducing agent. The result of the cleavage was a GD₃ derivative with an aldehyde functional group in the position of the former double bond in the ceramide portion (Fig. 1). Cleaved GD₃ migrated slower than native GD₃ and formed double bands because the ceramide contained unsaturated fatty acids that were cleaved simultaneously (see Fig. 1, inset). Densitometric analysis of HPTLC plates showed that more than 70% of GD₃ (bmm) was cleaved by this procedure. Preliminary experiments involving longer ozone treatment had similar results, indicating that 30% of GD₃ from this source consists of sphinganine or phytosphingosine analogues that contain no ozone-cleavable ceramide double bond. Cleavage at –78°C with ozone treatment up to 1 h (depending on the amount of GD₃ used) was found to be optimal. Cleaved GD₃ persisted only in acidic and neutral phosphate buffers for up to 72 h, but with the formation of increasing amounts of oligosaccharide due to β-elimination reactions [which have been shown to occur much faster at alkaline pH (23)]. The decreased hydrophobicity of cleaved GD₃ compared to native GD₃ allowed its separation by HPLC on C₁₈ reversed-phase columns.

FACS Analysis of Mouse Antisera. A single cell suspension of the melanoma cell line SK-MEL-28 was obtained after treatment with 0.1% EDTA in PBS followed by passage through a 26-gauge needle. Cells (3 × 10⁶) were incubated with 40 μl of 1:20 diluted post- or preimmunization serum for 30 min on ice. The cells were washed three times with 3% fetal calf serum in PBS. Thirty μl of diluted (1:50) fluorescein isothiocyanate-labeled goat anti-mouse IgG (Southern Biotechnology Associates Inc., Birmingham, AL) were added as secondary antibody, followed by incubation on ice for 30 min. Cells were washed three times as above and resuspended in 500 μl 3% fetal calf serum in PBS and analyzed by flow cytometry (FACScan, Becton Dickinson, San Jose, CA).

**Neutral Phosphate Buffers for up to 72 h, but with the formation of increasing amounts of oligosaccharide due to β-elimination reactions [which have been shown to occur much faster at alkaline pH (23)]. The decreased hydrophobicity of cleaved GD₃ compared to native GD₃ allowed its separation by HPLC on C₁₈ reversed-phase columns. Utilizing isocratic elution with a linear water-acetonitrile gradient, cleaved GD₃ was recovered first, and uncleaved GD₃ was eluted in later fractions. The incubation of cleaved GD₃ with proteins resulted in the formation of Schiff bases between the cleaved ganglioside and ε-aminosyl groups. They were reduced with sodium cyanoborohydride to form stable secondary amine bonds (28). The reaction was monitored by HPTLC, which showed a decreasing ratio of the cleaved GD₃ to a resorcinol positive band at the origin, indicating the formation of neoglycoconjugates. The reaction was generally completed after incubation for 48 h at 37°C. Disialyllactose was readily remov-

REFERENCES

able by dialysis, and the excess of cleaved GD3 was removed by passage through a detergent-removing column. The degree of coupling was determined by sialic acid and protein determinations. The weight ratio of GD3 to proteins in the different conjugates, shown in Table 1, depended on the accessibility of lysine groups in the proteins. The average yield of GD3 coupled to proteins was 30%. GD3 conjugates prepared in this way were reactive with anti-GD3 mAb R24 by Western blot analysis, although the GD3-aldehyde derivative itself was not reactive by TLC (data not shown).

Oligosaccharide Conjugation. The carbohydrate part of GD3, disialyllactose, was coupled to proteins utilizing two methods. The first method, reductive amination, resulted in conjugation of the open ring form of the glucose to proteins (26). The method required a long incubation of the oligosaccharide with proteins, and the yield was less than 20%. In the second method (27), involving N-acroloylation of the terminal glucose, the oligosaccharide was coupled to proteins with a closed ring formation. None of these oligosaccharide conjugates showed reactivity with mAb R24 by Western blot analysis (data not shown).

Table 1 Antibody response to immunization with different vaccines containing GD3 or disialyllactose conjugated to carrier proteins

<table>
<thead>
<tr>
<th>Vaccine + QS-21</th>
<th>No. of mice</th>
<th>GD3:protein weight ratio</th>
<th>Reciprocal ELISA peak titer against GD3</th>
<th>IgG</th>
<th>IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD3</td>
<td>5</td>
<td>0.33</td>
<td>0 (5)</td>
<td>20 (3), 0 (2)</td>
<td></td>
</tr>
<tr>
<td>GD3-KLH</td>
<td>5</td>
<td>2,650 (2), 1,280 (2), 5,120 (2), 2,560 (3), 1,280 (2), 80 (2), 0 (2), 0</td>
<td>160, 40, 20 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GD3-cBSA</td>
<td>14</td>
<td>0.69</td>
<td>2,650 (2), 1,280 (2), 2,560 (3)</td>
<td>2,560, 1,280 (2), 640, 320 (3), 160 (2), 80 (3), 20, 0</td>
<td></td>
</tr>
<tr>
<td>GD3-MAP</td>
<td>15</td>
<td>0.93</td>
<td>0.69, 2,560 (2), 80 (4), 20 (3), 0 (7)</td>
<td>2,560, 1,280 (2), 160 (7), 80 (4), 40</td>
<td></td>
</tr>
<tr>
<td>GD3-Polylysine</td>
<td>10</td>
<td>1.0</td>
<td>0 (0)</td>
<td>160 (2), 40 (4), 20 (3), 0</td>
<td></td>
</tr>
<tr>
<td>Disialyllactose-KLH</td>
<td>4</td>
<td>0.055</td>
<td>0 (4)</td>
<td>320, 160 (4), 80, 40, 20 (2), 0</td>
<td></td>
</tr>
<tr>
<td>Disialyllactose-cBSA</td>
<td>4</td>
<td>0.16</td>
<td>20, 0 (3)</td>
<td>160 (3), 80</td>
<td></td>
</tr>
<tr>
<td>Disialyllactose-KLH</td>
<td>4</td>
<td>0.25</td>
<td>0 (3)</td>
<td>40, 20 (3)</td>
<td></td>
</tr>
<tr>
<td>Disialyllactose-cBSA</td>
<td>4</td>
<td>0.34</td>
<td>0 (4)</td>
<td>0 (4)</td>
<td></td>
</tr>
<tr>
<td>Disialyllactose-Polylysine</td>
<td>5</td>
<td>ND</td>
<td>0 (5)</td>
<td>80 (3), 40 (2)</td>
<td></td>
</tr>
</tbody>
</table>

* Protein and ganglioside content were determined by BioRad protein assay and by neuraminic acid determination according to the method of Svennerholm (25).

b GD3 and KLH were mixed prior to immunization.

c GD3 was covalently attached to proteins prior to immunization after ozonolysis as described in "Materials and Methods."

d Disialyllactose was conjugated to KLH and cBSA by reductive amination according to the method of Gray (26).

e Disialyllactose was conjugated to KLH, cBSA, and poly-L-lysine after N-acroloylation and Michael addition according to the method of Roy and Lafferre (27).
GD3-PROTEIN CONJUGATE VACCINES FOR MELANOMA

strongest immunogenicity, resulting in a median titer of 1:320 for IgM and 1:2560 for IgG antibodies. The specific isotype profile was determined with subclass-specific secondary rabbit anti-mouse antibodies. Antigen-specific antibodies were found to be predominantly of the IgG1 subclass. Antigen-specific IgG2a and IgG2b antibodies were found only in traces, and no IgG3 or IgA antibodies were detected.

In contrast to immunization with GD3 conjugates, immunization with GDα-oligosaccharide conjugates induced only a weak IgM response to GD3 and no IgG response.

Sequential IgM and IgG antibody titers against GD3 for five mice immunized with GD3-KLH and QS-21 are shown in Fig. 2. IgM titers peaked 2 weeks after the third vaccination and declined by the time of the first booster immunization at week 16. The first booster immunization had no significant impact on IgM titers, but the second booster immunization at week 28 increased IgM titers to the peak level seen after the third vaccination of the initial series. IgG titers also rose up to 2 weeks after the third vaccination and decreased by the time of the first booster vaccination but rapidly increased after the booster to previous peak titers. IgG titers remained at this level for 10 weeks, with a further increase after the second booster in most mice. The evidence for a secondary immune response after the booster immunization was therefore equivocal. The response was clearly more rapid than after the initial immunization and lasted longer, but the increase in titer was not comparable to booster responses seen with classical T-cell-dependent antigens.

Specificity of the Serological Response to Immunization with GD3-Protein Conjugates. The specificity of the serological response to immunization with GD3-protein conjugates and QS-21 was analyzed by dot-blot immune staining and ITLC. An example of dot-blot immune stain analysis is shown in Fig. 3. Preimmune sera and immune sera showing high GD3-antibody titers in ELISA were tested on nitrocellulose strips that had been spotted with GD3 (bbm) or GD3 (mel) and purified structurally related gangliosides: GM3, GD2, GD1b, and GT3. As expected on the basis of the ELISA results, preimmune sera showed no reactivity. In contrast, sera obtained after immunization with KLH conjugates of GD3-ganglioside reacted with GD3 (bbm) (the immunogen) or GD3 (mel), but not with the other gangliosides except GT3 in some cases, a pattern also seen in tests of the mouse monoclonal IgG3 antibody R24, the reagent by which high cell surface expression of GD3 on human melanoma cells was first defined (20). The same specificity pattern was seen in dot-blot immune stain tests of sera from mice immunized with other GD3-protein conjugates, the only exception being high-titer sera (by ELISA) from mice immunized with GD3-cBSA, which showed no reactivity with GD3 or the other gangliosides.

ITLC permits specificity analysis of ganglioside antibodies in tests on tissue extracts. Examples of tests with high-titer sera from mice immunized with GD3-KLH and QS-21 are shown in Fig. 4. The sera were tested at a dilution of 1:150 on ganglioside extracts of human brain, neuroblastoma, and melanoma, as well as GD3 (bbm) that had been used for immunization. The figure shows HPTLC ganglioside patterns of these reagents after staining with resorcinol, as compared with the patterns of reactivity exhibited after exposure to sera from immunized mice or mAb R24. As can be seen in the resorcinol-stained panel, the predominant gangliosides in the brain tissue extract are GM1, GD1a, GD1b, and GT1b, whereas the neuroblastoma extract shows GD2 and Gd2 in addition, and the melanoma extract contains mainly

Fig. 2. Time course of GD3 antibodies induced in representative mice immunized with GD3-KLH and QS-21 vaccine. Each symbol represents an individual mouse. Arrows, time of vaccination.
Ganglioside molecules are so small, however, that linkage to carrier molecules without affecting the relevant antigenic epitopes is difficult. We have shown previously that modifications of GD3 in its carbohydrate portion (i.e., conversion of sialic acid carboxyl groups to amides or gangliosidols or lactones) results in markedly increased immunogenicity. However, antibodies produced in response to these GD3 derivatives show no cross-reactivity with native GD3 (11, 30). Covalent attachment of proteins to the sialic acid molecules of GD3 was therefore not attempted in the present study. Our initial approach involved conjugation of GD3 oligosaccharide (disialyllactose) via the terminal glucose in open- or closed-ring configuration to KLH or polylysine, but these conjugates were not recognized by the anti-GD3 mAb R24 or by mouse antisera to GD3, and mice immunized with the conjugates did not produce GD3 antibodies. Subsequently, we coupled GD3 to proteins via its ceramide portion without alteration of the carbohydrate moiety. The ceramide was cleaved with ozone at the double bond of the sphingosin base, and coupling to proteins was accomplished by reductive amination. Cleavage of gangliosides by ozonolysis and subsequent conjugation with proteins by this method has not been described, and it has been generally assumed that the aldehyde intermediates of gangliosides would be unstable. Fragmentation, initiated by hydroxy ions under alkaline conditions, has been reported. Migration of the double bond would result in \(\beta \)-elimination, causing release of the oligosaccharide moiety (22, 31). We found, however, that the aldehyde was sufficiently stable at neutral pH to permit Schiff base formation with amino groups of proteins, so that \(\beta \)-elimination was not a major problem. The overall yield was 30%. These GD3 aldehyde-protein conjugates showed reactivity with GD3 antibodies by Western blot analysis, indicating that the immunodominant epitopes were intact in these GD3 conjugates. However, reactivity of the GD3-aldehyde derivative with mAb R24 by ITLC could not be shown. This may be due to its relatively unstable nature, resulting in \(\beta \)-elimination and release of oligosaccharide during the immune stain incubation period, or simply to the fact that the GD3 aldehyde derivative may not adhere to the thin-layer plate sufficiently for serological detection.

Earlier studies describe oxidative ozonolysis of the glycosphingolipid olefinic bond, resulting in a carboxyl group that could be conjugated with carbodiimide to NH2 groups of modified glass beads, agarose gel, or other macromolecules (32, 33). This method, however, is of limited use for the conjugation of gangliosides to carrier proteins because it requires acetylated, methyl ester derivatives of gangliosides to avoid coupling via the sialic acid carboxyl group. Deacetylation after conjugation under basic conditions is necessary, conditions most proteins cannot be exposed to without degradation.

Once the conjugation method was established, several protein carriers were considered, based on previous work by others. Lowell et al. (34) described an elegant system that resulted in high-titer antibody responses as a consequence of anchoring bacterial carbohydrate and peptide antigens via a synthetic, hydrophobic foot in OMPs of Neisseria meningitidis (35). This system was directly applicable to gangliosides because of their amphipathic nature. In previous studies, we adsorbed gangliosides onto OMP by hydrophobic interaction, and we were able to induce high-titer IgM responses (36). Covalent attachment was utilized in the current study, but GD3-OMP conjugates induced only occasional IgG responses, and the IgM response was not increased. Conjugation with cationized BSA, which has been reported to be a potent carrier for protein antigens (37), resulted in high-titer IgG antibodies detected by ELISA, but immune stains indicated that the response was not GD3-specific. Another appealing carrier is the MAP system described by J. P. Tam (38, 39). MAPs consist of four or eight dendritic peptide arms, containing B- and T-cell epitopes, attached to an oligomeric branched lysine core. The antibody response to peptides was dramatically increased when these constructs were
used. When we attached GD3 to the amino terminal end of the MAP structure containing a malarial T-cell epitope, only a moderate IgM response against GD3 was detected, and there was no detectable IgG response. Conjugation of GD3 to polylysine resulted in a medium-titer IgM response and no IgG response, despite the high density of GD3 epitopes on these constructs.

The carrier that proved to be most effective in enhancing the antibody response to GD3 in this series was KLH. Immunization with GD3-KLH consistently induced long-lasting production of IgM and IgG antibodies against GD3 at high titers. In comparing KLH with cBSA, OMP, MAP, and polylysine, it is difficult to know exactly why KLH is a superior carrier for GD3. The sheer size and antigenic complexity of KLH stand out as a possible aid to antigen processing and recruitment of T-cell help across a broad range of T-cell specificities. The very qualities that make KLH cumbersome to work with are probably responsible for its unique effectiveness as a carrier in conjugate vaccines. KLH has not been widely used as a carrier for conjugate vaccines in humans because its size and heterogeneity make vaccine construction and standardization difficult.

Our hope was that conjugate vaccines would convert the T-cell-independent response against unconjugated GD3 seen in our previous studies to a T-cell-dependent response producing high-titer, long-lived, IgG antibodies. This expectation was fulfilled to some extent but not completely. The peak of the IgM response occurred after the third biweekly vaccination as in our previous studies with unconjugated GD3, but the antibody titers were significantly higher. The response declined rapidly (as observed before), and additional vaccinations increased IgM titers to previous peak levels. The repeated increase in the titer of IgM antibodies to GD3 after booster immunizations differs from the expected response to T-cell-dependent antigens such as proteins, which generally induce little or no IgM response after booster immunizations. For the first time, however, we were able to induce a high-titer IgG response against GD3 ganglioside consistently. This response lasted significantly longer than the IgM response and was increased by additional vaccinations, although the response following booster vaccinations was not comparable to the exponential increase often seen with protein antigens. The fact that the GD3 antibodies were of the IgG1 subclass indicates that a T-cell-dependent pathway was activated by the GD3-KLH conjugate vaccine. The lack of a classical booster effect, however, may reflect the carbohydrate nature of GD3 and its status as an auto-antigen. This suggests that T-cell recruitment by ganglioside conjugate vaccines is limited by the nature of the antigen itself. Nevertheless, the high-titer IgM response and long-lived IgG response to vaccination with GD3-KLH and QS-21 seen in these experiments represents a striking improvement over the response to unconjugated ganglioside vaccines and can now form the basis for clinical trials of ganglioside-KLH conjugate vaccines in patients with cancers that show increased ganglioside expression.

ACKNOWLEDGMENTS

The authors wish to acknowledge Dr. L. J. Old and Dr. K. O. Lloyd for their advice and critical comments.

REFERENCES

Go3-PROTEIN CONJUGATE VACCINES FOR MELANOMA

GD3 Vaccines for Melanoma: Superior Immunogenicity of Keyhole Limpet Hemocyanin Conjugate Vaccines

Friedhelm Helling, Ann Shang, Michele Calves, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/54/1/197

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.