Mutation of K-ras Protooncogene Is Associated with Histological Subtypes in Human Mucinous Ovarian Tumors

Yoshihiro Ichikawa, Masato Nishida, Hiromichi Suzuki, Sadao Yoshida, Hajime Tsunoda, Takeshi Kubo, Kazuhiko Uchida, and Masanao Miwa

Introduction

A series of genetic alterations detected in premalignant states of carcinomas and in malignant tumors provide important information about the mechanism of carcinogenesis (1). In colorectal neoplasia, alterations in the cellular protooncogenes leading to disordered cell growth and differentiation have been identified (1, 2). The common epithelial ovarian neoplasms are classified on histogenetic principles mainly in serous, mucinous, endometrioid, and clear cell tumors. The origin of serous ovarian tumors is the surface epithelium (3). Mucinous ovarian tumors are considered to originate from the ovarian surface epithelium (a müllerian origin) or from a teratoma, but this histogenesis of the mucinous ovarian tumors has not been clearly elucidated (3). Recently, mutations of K-ras gene have been detected more frequently in mucinous ovarian tumors and tumors of borderline malignancy than in serous ones (4). But the association of K-ras mutations with histological subtypes of the ovarian mucinous tumors has not been determined. Additionally, the genetic alterations involved in ovarian adenomas are still poorly understood. In the present study, we investigated the possible involvement of K-ras mutations in the development of mucinous ovarian adenomas, tumors of borderline malignancy and carcinomas, and serous tumors, and discuss the association of K-ras mutations with histological subtypes in mucinous ovarian tumors.

Materials and Methods

Abstract

A series of 57 mucinous and 47 serous ovarian tumors (adenomas, tumors of borderline malignancy, and carcinomas) were examined by polymerase chain reaction-single strand conformation polymorphism analysis and direct sequencing for mutations in codons 12, 13, and 61 of K-ras gene. Higher incidence of K-ras mutations was observed in mucinous tumors compared to serous ones. Mutations were detected in 4 of 30 mucinous adenomas (13%), in 4 of 12 mucinous tumors of borderline malignancy (33%), and in 7 of 15 mucinous carcinomas (46%). Only 1 of 17 serous carcinomas (6%) had a mutation of K-ras in serous ovarian tumors. All mutations identified were in codon 12. Detailed analysis revealed that more K-ras mutations in mucinous adenomas were observed in intestinal type (identified in 4 of 13) than in endocervical type (identified in 0 of 17). Thus, K-ras gene codon 12 mutations in mucinous ovarian adenomas appear to be associated with the occurrence of intestinal type adenomas.

Results

Ovarian mucinous and serous adenomas, tumors of borderline malignancy, and carcinomas were examined for point mutations in codon 12, 13, or 61 of K-ras gene by PCR-SSCP analysis. The mobility shifts in the SSCP gel are shown in Fig. 1. Mobility shifts indicating K-ras mutations with histological subtypes in mucinous ovarian tumors.

Received 10/12/93; accepted 11/12/93.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This study was supported in part by Grants-in-Aid for Scientific Research, Cancer Research, and Tsukuba Project Research from the Ministry of Education, Science and Culture, Japan.

2 To whom requests for reprints should be addressed, at Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305, Japan.

3 The abbreviations used are: PCR, polymerase chain reaction; SSCP, single strand conformation polymorphism.
the presence of point mutations in codon 12 or 13 were found in 4 of 30 mucinous adenomas (13%), in 4 of 12 mucinous tumors of borderline malignancy (33%), and in 7 of 15 mucinous carcinomas (46%). In serous tumors, however, only 1 of 17 carcinomas (6%) showed an altered migration. All other serous adenomas, tumors of borderline malignancy, and carcinomas represented the wild-type pattern. In all cases examined, no altered migration indicating the presence of a point mutation in codon 61 was detected.

Every case showing a mobility shift in SSCP was examined by direct sequencing to confirm a mutation. There was a complete concordance between the mobility patterns in SSCP and the results of direct sequencing. Typical DNA sequencing autoradiographs are shown in Fig. 2. The results are summarized in Table 1. All 16 cases confirmed by sequencing involved a second base change of codon 12. Eight cases involved a base change from GGT to GTT (Gly to Val), 7 from GGT to GAT (Gly to Asp), and 1 from GGT to GCT (Gly to Ala). A high frequency of K-ras mutation in mucinous tumors including adenomas compared to serous tumors was observed. K-ras mutations were detected in stages Ia and Ib of mucinous tumors including adenomas compared to serous tumors was observed. K-ras mutations were detected in stages Ia and Ib of mucinous tumors of borderline malignancy and carcinomas (Table 1). Two cases, cases 43 and 44, which showed stage IIc and II, respectively, involved a base change from GGT to GTT. Only one case of serous carcinoma with a K-ras mutation was in stage Ia (case 88).

Analysis of correlation between histological subtypes of ovarian tumors and K-ras mutations is summarized in Table 2. Mutation in codon 12 of K-ras gene was observed in 15 of 57 (26%) mucinous tumors, but in 1 of 47 (2%) serous ones. The higher frequency of K-ras mutation in mucinous tumors than in serous ones is statistically significant (P < 0.0005; Fisher exact test). In mucinous tumors, the statistical difference of the incidence of K-ras mutation was found between adenomas (4 of 30) and carcinomas (7 of 15) (P < 0.03).

In mucinous adenomas, mutation in codon 12 of K-ras gene was associated with the lining of the epithelium. The incidence of K-ras mutation in mucinous adenoma was significantly higher in intestinal type (4 of 13) than in endocervical type (0 of 17) (P < 0.03). However, in mucinous tumors of borderline malignancy, a higher mutation frequency was observed in endocervical type (2 of 5) compared to intestinal ones (2 of 7), but this was not statistically significant (P = 0.15) (Table 2).

Discussion

The present study showed a higher incidence of mutations in codon 12 of K-ras gene was associated with intestinal type-mucinous adenoma. This correlation was not observed in mucinous tumors of borderline malignancy. The origin of intestinal-type mucinous tumors is considered as a teratoma. The finding of goblet cells, argentaffin cells, Paneth cells, and cystic teratomas, which are present in about 5% of mucinous tumors, suggests that some mucinous neoplasms may represent monomorphic endodermal differentiation of a teratoma (7). In this study, all the mucinous adenomas with a mutated K-ras gene were classified as intestinal type. Therefore, mutation of K-ras gene may be involved in tumorigenesis of intestinal-type mucinous adenomas originating from teratomas. K-ras mutation was not found in endocervical type of adenomas, but was found in both intestinal type and endocervical type of tumors of borderline malignancy. Mutations of K-ras might be involved in the development of endocervical-type mucinous tumors of borderline malignancy. The genetic events including K-ras mutation are possibly associated with the determination of histological subtypes during ovarian tumor development.

Our study is the first comprehensive analysis of K-ras mutation in ovarian mucinous adenomas. The higher incidence of K-ras mutations in ovarian mucinous tumors of borderline malignancy and carcinomas than in serous ones is consistent with previous reports (4, 8). The rate of positive cases (2%) in serous carcinomas was lower than that reported previously (20–30%) in serous carcinomas (4, 8). Serous carcinomas with mutated K-ras gene reported previously have all been in stage III or IV (4, 8), but in our study, the mutation-positive case was in stage Ia, and no K-ras gene mutations were found in 10 cases of stage III and in 2 cases of stage IV serous carcinomas. The reason for this discrepancy remains unknown, but racial differences might be one possibility.

Recent studies revealed that the ras family of protooncogenes has been involved not only in cellular carcinogenesis but also in control of cellular growth and differentiation (9). In certain human neoplasms, K-ras gene mutations have been suggested to play a role in the cellular pathway of mucinous differentiation (10, 11). In our study, K-ras mutations were preferentially identified in mucinous carcinomas, tumors of borderline malignancy, and adenomas compared to serous ones. These results suggest that the K-ras mutations are an early genetic event in a subset of ovarian mucinous tumors.

In colorectal tumors, K-ras mutations are detected at a similar incidence in both adenomas and carcinomas (2, 12). In lung adenocarcinomas, alterations in codon 12 of K-ras gene occur early and irreversibly during their development (13). In gynecological tumors, the incidence of K-ras mutations in endometrial hyperplasias is similar to the incidence in carcinomas (14). These findings suggest that
the K-ras gene may play an important role in an early step of carcinogenesis. On the other hand, in ovarian tumors, a lower incidence of K-ras mutation in serous adenomas compared to mucinous ones was observed in our study, and also in a previous report (15). These results indicate possible pathways, other than K-ras gene activation, in the development of ovarian neoplasms. More detailed studies are required to define the ovarian adenoa-carcioma sequence, and to clarify other genetic alterations in mucinous ovarian carcinogenesis.

Acknowledgments

We thank Dr. M. Hori for preparation of Lu65 cells for SSCP analyses. We also thank S. Hanai for advice in sequencing and T. Mogi for preparation of sections from tissue blocks.

References

Mutation of K-ras Protooncogene Is Associated with Histological Subtypes in Human Mucinous Ovarian Tumors

Yoshihiro Ichikawa, Masato Nishida, Hiromichi Suzuki, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/54/1/33

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.