Frequent Detection of Codon 877 Mutation in the Androgen Receptor Gene in Advanced Prostate Cancers

Jaya P. Gaddipati, David G. McLeod, Howard B. Heidenberg, Isabell A. Sesterhenn, Michael J. Finger, Judd W. Moul, and Shiv Srivastava

Urology Service, Walter Reed Army Medical Center, Washington, DC 20307-5001; Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20814-4799; and Armed Forces Institute of Pathology, Washington, DC 20306-6000

Abstract
Prostatic tissue specimens derived from transurethral resections of patients with metastatic prostate cancer were analyzed for genetic alterations in the hormone-binding domain of the androgen receptor (AR) gene. Direct sequencing of the polymerase chain reaction-derived DNAs of 6 of 24 specimens revealed a codon 877 mutation (ACT → GCT, Thr → Ala) in the hormone-binding domain of the AR gene. This same AR mutation has been reported previously in a metastatic prostate cancer cell line, LNCaP, where this mutation confers upon the AR an altered ligand-binding specificity which is stimulated by estrogens, progesterogens, and antiandrogens. It is possible that analogous to an activated/alternated growth factor receptor oncogene, codon 877 mutant AR with altered ligand binding may provide a selective growth advantage in the genesis of a subset of advanced prostate cancer. Although estrogens are used infrequently, antiandrogens are used increasingly in hormonal therapy for patients with advanced prostate cancer. The stimulatory effect of these therapeutic agents on the codon 877 mutant AR further suggests that this frequently observed AR mutation may contribute to the treatment refractory disease.

Introduction
Prostate cancer is the most frequently diagnosed solid tumor and the second leading cause of cancer death in men in the United States (1). Although potentially curable in its early stages, metastatic prostate cancer is incurable despite major remissions commonly achieved with hormonal therapy. Historically, 40–50% of patients with this disease present with locally advanced or metastatic disease (2). The cornerstone of therapy in patients with metastatic disease (2). The cornerstone of therapy in patients with this disease involves androgen ablation through orchiectomy, by blockade of androgen signaling pathway(s) via AR (3). Androgen ablation therapy in prostate cancer involves the inhibition or blockade of androgen signaling pathways via AR in prostatic epithelial cells. It has been postulated that alterations of the AR may play an important role in prostate cancer development. Earlier studies using radioligand binding showed that lower levels of the nuclear AR correlated with a poor response to hormonal therapy (6). However, the major concern regarding these observations was the accuracy of the assays using homogenized specimens containing both normal and tumor cells (6). Recent studies using AR immunostaining have shown the presence of AR in prostate cancer specimens resistant to hormonal therapy (7–10), and more careful analysis has revealed a correlation between heterogeneous AR staining within specimens and a poor response to hormonal therapy (11). Although the analysis of AR protein may approximate the presence or absence of AR in prostate cancer specimens, these methods are not able to address alterations of AR functions resulting from mutations in the transcription activation region, DNA binding, or HBD of the AR gene (12). There have been only a few reports describing infrequent AR mutations in prostate cancer to date. A well characterized cell line, LNCaP, derived from a lymph node of a patient being treated with estrogen and orchiectomy for metastatic prostate cancer, is known to harbor a mutant AR with a point mutation in the HBD (13, 14). The possibility of cell culture artifacts for this AR mutation has not been excluded. The same LNCaP AR mutation has been described either as a codon 877 (ACT → GCT) of a 919-codon AR complementary DNA (13) or as a codon 868 (ACT → GCT) in a 910-codon AR complementary DNA (14). A recent study has analyzed 26 early stage B prostate cancers and reported codon 730 AR mutation in one specimen (15). Recent studies of the AR gene in advanced prostate cancers have also revealed mutations in codons 701 and 877 in 1 of 8 specimens (16), in codons 340 and 798 in 2 of 10 specimens (17), and in codon 715 in 1 of 7 specimens (18). It is interesting that most of the reported AR mutations in prostate cancers were present in the HBD. It is critically apparent that alteration of AR in advanced prostate cancer needed to be evaluated further. Toward this goal, we have analyzed specimens of TUR of prostate from 24 patients with advanced disease for alterations in the HBD of AR.

We have found the frequent presence (6 of 24) of the codon 877 mutation (ACT → GCT) in prostate cancer specimens studied in our laboratory. The detailed analysis of the complete HBD of the AR in two specimens positive for the codon 877 mutation and one specimen negative for this mutation did not reveal any other mutation. This is the first report demonstrating the frequent mutation of codon 877 in advanced prostate cancers, and the implications of our findings are discussed.

Received 3/9/94; accepted 4/21/94.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by the Center for Prostate Disease Research Grant G190CM, a program of the Harry M. Jackson Foundation for the Advancement of Military Medicine. The assertions and opinions contained herein are the private views of the authors and should not be construed as reflecting views of the Department of Defense or the United States Army.

2 To whom requests for reprints should be addressed, at Uniformed Services University of the Health Sciences, F. Edward Herbert School of Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814-4799.

3 The abbreviations used are: AR, androgen receptor; HBD, hormone-binding domain; mu, mutant; TUR, transurethral resection; PCR, polymerase chain reaction; wt, wild-type.

2861
Materials and Methods

Tumor Specimens and Cell Lines. Clinical pathological data on all patients were obtained from the tumor registry review at Walter Reed Army Medical Center (Washington, DC). A total of 24 patients with advanced prostate cancer were selected for this study. Two prostate cancer cell lines, LNCaP, DU 145, and PC-3 were obtained from American Type Culture Collection (Rockville, MD).

Archival paraffin-embedded channel TUR specimens of these selected patients were analyzed by hematoxylin and eosin staining of 4-μm-thick sections for the presence of tumor cells. Regions of the tumor tissue sections containing a high fraction of the neoplastic cells (20–100%) were identified by one author (I. A. S.).

DNA Extraction. Corresponding tumor regions from hematoxylin and eosin slides were marked on the tissue embedded in paraffin blocks and were microdissected. DNA was then extracted following the method of Moul et al. (19) where the tissue was deparaffinized by xylene and DNA was extracted by proteinase K treatment followed by phenol extraction and ethanol precipitation.

PCR/DNA Sequencing. The DNAs were amplified by PCR for the five exons of HBD of the AR gene using the primers described by Lubahn et al. (20), except for the upstream primer of exons D and G. The primers used for exons D and G are 5′-GTAAGTGGATTGTGTTTGTAGACC-3′ and 5′-GTCAAGTGCTGGTCAAGAAAACCTGG-3′, respectively. The PCR of genomic DNAs were essentially performed as described earlier (21). The specific PCR reaction conditions were: 95°C for 30 s; 60°C for 45 s, and 72°C for 60 s for 40 cycles followed by 72°C for 5 min for 1 cycle.

To generate the template for DNA sequencing, a second PCR reaction comprising an aliquot of the first PCR product and the primers set including one biotin-labeled primer was performed. Additionally, to increase the specificity of the PCR reaction, the second PCR was always performed with at least one primer nested to the primers used in the first PCR reaction. The primers used for the second PCR were: exon D, 5′-CCACCTGTAGGAGACACAC-CAAGAGGC-3′; 5′-GATCCCCCCTTATCTATGTCCTCCC-3′; exon E, 5′-CAACCCGTGATCAGCTACCAGGCT-3′; 5′-ACCAACCAACGTCGAGGC-CAGCTGC-3′; exon F, 5′-CTCTGAGGCTTATTGGTAAACTTCC-3′; 5′-TGTCCTCCTGCAAATCTCTGTCG-3′; exon G, 5′-ACTACCCAGCCCTGGTCCTCAGT-3′; 5′-CTCTATACGGGGTCTTCCCCGGTAT-3′; exon H, 5′-GAGGCCCCATCTGCTGCAACCTCG-3′; 5′-GAGGATGTCGACAGTTATAACAGGC-3′. The primers with the prefix B refer to biotinylated primers. The second PCR reaction conditions were similar to the first PCR except that the amplification was only for 30 cycles. The 5′-biotinylated single stranded DNA was purified using streptavidin magnetic beads (Dynal, NY) and DNAs were sequenced with complementary sequencing primers using Sequenase version 2.0 (United States Biochemicals).

Results

For archival paraffin-embedded prostate tumor specimens of 24 patients used in this study, the patients had a known history of advanced prostate cancer and presented with the symptoms of bladder outlet obstruction despite treatment with hormonal and/or radiation therapy (Table 1). The DNA sequence of 3 of the first 11 specimens analyzed revealed the presence of a point mutation in codon 877 (ACT → GCT) of exon H of the AR gene (Fig. 1). Additionally, sequencing of both strands revealed the same mutation without any other alteration of exon H. Since we detected the same mutation previously reported for LNCaP cell line and our analysis used PCR, we wanted to rule out any accidental contamination of prostate cancer specimens with LNCaP DNA from our laboratory, as well as the possibility of cross-contamination between specimens. For this purpose, we repeated the entire procedure starting from the same genomic DNA or a new DNA preparation, and we reproducibly detected the codon 877 mutation in the same specimens. The only variation between three such repeated experiments was the varying intensities of DNA or a new DNA preparation, and we reproducibly detected the same sequence in the same specimens.

Table 1 Androgen receptor gene mutation and stage of prostate cancer specimens

<table>
<thead>
<tr>
<th>Patient</th>
<th>Stage at TUR</th>
<th>Codon 877 AR mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>D1</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>D1</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>D0</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>D1</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>17</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>18</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>21</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>22</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>23</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>24</td>
<td>D2</td>
<td>+</td>
</tr>
<tr>
<td>LNCaP</td>
<td>Cell line</td>
<td>+</td>
</tr>
<tr>
<td>DU 145</td>
<td>Cell line</td>
<td>-</td>
</tr>
<tr>
<td>PC 3</td>
<td>Cell line</td>
<td>-</td>
</tr>
</tbody>
</table>

Human placenta Control

The detection of the wt band is most likely due to the extraction of a residual wt band in the codon 877 in DNA sequencing gels (Fig. 1). The detection of the wt band is most likely due to the extraction of a residual wt band in the codon 877 in DNA sequencing gels (Fig. 1). The detection of the wt band is most likely due to the extraction of a residual wt band in the codon 877 in DNA sequencing gels (Fig. 1). The detection of the wt band is most likely due to the extraction of a residual wt band in the codon 877 in DNA sequencing gels (Fig. 1). The detection of the wt band is most likely due to the extraction of a residual wt band in the codon 877 in DNA sequencing gels (Fig. 1). The detection of the wt band is most likely due to the extraction of a residual wt band in the codon 877 in DNA sequencing gels (Fig. 1). The detection of the wt band is most likely due to the extraction of a residual wt band in the codon 877 in DNA sequencing gels (Fig. 1). The detection of the wt band is most likely due to the extraction of a residual wt band in the codon 877 in DNA sequencing gels (Fig. 1).

Discussion

Although infrequent AR mutations in prostate cancers have been described recently (15–18), it is striking that we have frequently detected the codon 877 (ACT → GCT) mutation in a number of advanced prostate cancer specimens (6 of 24 patients). The same AR mutation has been described earlier in a metastatic prostate cancer cell line, LNCaP, but the in vivo origin of this AR mutation has not been completely established. Our studies, along with the recent report of Suzuki et al. (16), describing the same codon 877 AR mutation in the AR gene, further suggest that the in vivo selection of the codon 877 mutation in prostate cancer specimens reported here truly represent in vivo mutation. We extended the analysis of this mutation to an additional 13 specimens, and these specimens were processed for DNA extraction in a separate laboratory. Three more specimens from this group exhibited the same codon 877 mutation. Altogether, we identified 6 of 24 patients with an identical mutation of the AR gene (Fig. 1; Table 1). We next analyzed selected specimens for the rest of the HBD (12) encompassing part of exon D and complete exons of E, F, and G by DNA sequencing. Two specimens positive for codon 877 mutation did not reveal any other mutation in the remainder of the HBD. Furthermore, one specimen negative for codon 877 mutation and human placental DNA revealed wt AR sequence in the entire HBD. Thus, these results further suggest the in vivo selection of the codon 877 mutation in the HBD (Fig. 2) of the AR in prostate cancer specimens analyzed here.

Discussion

Although infrequent AR mutations in prostate cancers have been described recently (15–18), it is striking that we have frequently detected the codon 877 (ACT → GCT) mutation in a number of advanced prostate cancer specimens (6 of 24 patients). The same AR mutation has been described earlier in a metastatic prostate cancer cell line, LNCaP, but the in vivo origin of this AR mutation has not been completely established. Our studies, along with the recent report of Suzuki et al. (16), describing the same codon 877 AR mutation in
MUTANT ANDROGEN RECEPTOR IN PROSTATE CANCER

Fig. 2. Schematic representation of androgen receptor codon 877 mutation detected in prostate cancer specimens. Androgen receptor gene mutation and the corresponding amino acid change detected in the hormone-binding domain (R) of the androgen receptor protein. Adapted from the paper of Janne et al. (12), with permission.

metastatic specimens of one patient, provide strong support for the in vivo significance of this AR mutation. More importantly, the results reported here provide the first evidence for a mutational “hot spot” in the AR gene in a subset of prostate cancer.

Our results differ from other studies (15–18) in the frequent detection of this codon 877 mutation and are best explained by the larger number of specimens, the quality of the specimens, and the method by which tumor cell populations were selected and processed. In our study, hematoxylin and eosin staining was used to denote the most abundant concentration of tumor cells. The concentration of phenotypically similar tumor cells within the same specimen was quantitated, and the region containing tumor cells was microdissected to ensure that the inevitable inclusion of normal cells was kept to a minimum. Since the AR gene is present on chromosome X and there is only one X allele present in males, the presence of both the wt and mt codon 877 sequence in some specimens (Fig. 1) is most likely due to the presence of normal cells in tumor specimens. The DNA from the specimens containing 90–100% of tumor cells (analyzed by I. A. S.) exhibited only the mt band in the codon 877, further supporting the presence of normal cells in those tumor specimens exhibiting both wt and mt codon 877 sequence.

Mutations in the DNA-binding domain and HBD are described in androgen resistance syndromes (22). Recent studies have also shown mutations of AR in the DNA-binding domain in male breast cancer (23). Mutational analysis of the AR gene in vitro has shown that deletions of HBD can constitutively activate the receptor (24). Thus, mutations of a functionally important region in the AR gene may also abrogate AR signaling pathways. It is conceivable that these mutations of the AR gene contribute to the aggressive and hormone-refractory phenotype of advanced prostate cancer. Some of the implications of our observation can be extrapolated from studies on the functional characteristics of the mutant AR with a known codon 877 point mutation that is present in the LNCaP prostate cancer cell line (14). LNCaP cells were derived from a metastatic lesion of a patient with treatment-resistant prostate cancer and have been shown to have altered receptor specificity in binding to progestagens, estrogens, and antiandrogens (14). It is interesting to note that antiandrogens have an unexpected stimulatory effect on the growth of LNCaP cells. All the specimens analyzed here were also from patients with advanced prostate cancers. Of six specimens positive for the codon 877 mutation, a majority of them represented stage D disease (C, 1; D0, 1; D1, 2; D2, 2). On the basis of the altered ligand-binding specificity of AR due to codon 877 mutation, it is tempting to suggest that analogous to an activated/altered growth factor receptor oncogene (25), the mt AR may provide a selective growth advantage in a subset of advanced prostate cancer. In contrast to the expected inhibitory effect of the agents used in hormonal therapy, their stimulatory effect on the codon 877 mt AR (14) may provide one of the mechanisms involved in the treatment refractory prostate cancers. Therefore, follow-up of these interesting observations have the potential to unravel the molecular mechanisms involved in the genesis of treatment-resistant advanced prostate cancers.
Acknowledgments

We thank Dr. Esther Chang for her critical review of the manuscript and for her support during the course of this work. We also thank Dr. Michael Flora of the BIC synthesis and sequencing facility for expedient supply of the oligonucleotides, Michelle Dixon for preparing the manuscript, and Lucille Washington for her technical assistance.

Note Added in Proof

Recently we have obtained additional experimental evidence which further rules out any accidental contamination of the LNCaP DNA in prostate biopsy specimens. PCR based analysis of the polymorphic CAG repeat region of exon 10 of the androgen receptor gene in LNCaP and human benign and malignant prostate tissue. J. Urol., 149: 1015—1019, 1993.

References

Frequent Detection of Codon 877 Mutation in the Androgen Receptor Gene in Advanced Prostate Cancers

Jaya P. Gaddipati, David G. McLeod, Howard B. Heidenberg, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/54/11/2861

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.