Increased Formation of Oxidative DNA Damage, 8-Hydroxydeoxyguanosine, in Human Livers with Chronic Hepatitis

Ryuya Shimoda, Makoto Nagashima, Michie Sakamoto, Naohito Yamaguchi, Setsuo Hirohashi, Jun Yokota, and Hiroshi Kasai

ABSTRACT

8-Hydroxydeoxyguanosine (oh⁸dG) is a promutagenic DNA lesion produced by oxygen radicals. We examined alterations in the oh⁸dG level in human livers which have chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The oh⁸dG content in livers with chronic hepatitis was significantly higher than the oh⁸dG content in normal livers (P < 0.05). There was also a significant correlation between the oh⁸dG content in noncancerous liver tissues with individual serum alanine aminotransferase concentration (r = 0.515; P < 0.001). Thus, chronic inflammation in the liver produces oxidative DNA damage, which may increase the risk for genomic alterations causing hepatocarcinogenesis.

INTRODUCTION

HCC⁴ is one of the most frequent human cancers in the world. Pathoanatomical studies have revealed that hepatocarcinogenesis occurs in multiple stages including chronic liver disease, adenomatous hyperplasia, atypical adenomatous hyperplasia, early HCC, and advanced HCC (1). It is well accepted that cancer is attributed by genetic alterations accumulating in the cells during the stage of chronic liver disease. Thus, it is very important to identify risk factors for genomic instability which is responsible for the occurrence of genetic alterations for carcinogenesis. oh⁸dG⁵ is a promutagenic DNA lesion produced from deoxyguanosine by oxygen radicals (2, 3). Formation of oh⁸dG in DNA induces targeted G:C-to-T:A transversions unless repaired prior to DNA replication not only in vitro (3) but also in vivo (4–6). G:C-to-T:A transversions frequently occur in the p53 gene with the development of hepatocellular carcinoma (7, 8). Aflatoxin B1 is a potential contributor to hepatocarcinogenesis, and dietary exposure to it is correlated with G:C-to-T:A transversions at the third base of codon 249 of the p53 gene (9, 10). Though Japan is, geographically, a low-exposure area and the mutation site is not accumulated at codon 249 in Japanese patients, G:C-to-T:A transversion is one of the most common mutation types (8). Hepatitis might provoke free radical production and promote DNA replication through continuous cell death and regeneration. Pathologically, a number of active Kupffer cells, which are known to generate oxygen radicals (11), appear in livers with chronic active hepatitis. Serum ALT is a sensitive indicator of liver cell injury (12). Therefore, we estimated correlation between the oh⁸dG content in various types of human liver tissues and furthermore, we estimated correlation between the oh⁸dG content in noncancerous liver tissues and the individual serum ALT concentration to attest to the risk of chronic inflammation for carcinogenesis through the generation of oh⁸dG in DNA of the liver.

MATERIALS AND METHODS

Fresh human liver tumors and noncancerous liver tissues were collected in operating rooms from Japanese patients undergoing resections. Serum ALT concentrations were evaluated within 3 days before operations. Normal livers were collected from patients with metastatic liver tumors. To prevent oxidation by air exposure, all solutions and instruments which came in contact with the specimens were filled with argon gas. DNA was isolated from the homogenate of each sample (150–400 mg) using a nuclease acid extractor (Applied Biosystems). In this instrument, the homogenate was digested with protease K, and DNA was directly precipitated from the lysate with ethanol. Phenol/chloroform extraction was skipped, since it is known to induce oh⁸dG formation in DNA by subsequent exposure to the air (13). The extracted DNA was treated with nuclease P1 and alkaline phosphatase as described previously (14). oh⁸dG in digested DNA was assayed by an electrochemical detector, and δG was assayed by UV monitor, simultaneously, coupled with high-pressure liquid chromatography. The amount of δG was calculated from the absorbance at 290 nm, and the amount of oh⁸dG was expressed as the number of oh⁸dG for every 10⁵ δG in DNA. Statistical Package for Social Sciences was used for statistical analyses.

RESULTS AND DISCUSSION

The oh⁸dG contents in chronic hepatitis livers, cirrhosis livers, HCCs, and normal livers were evaluated by the method described above. We found that oh⁸dG level was increased in livers with chronic hepatitis but not in cirrhosis livers and HCCs. The oh⁸dG content in livers with chronic hepatitis was significantly higher than the oh⁸dG content in normal livers (P = 0.016) (Fig. 1). In contrast, the differences between cirrhosis livers and normal livers and between HCCs and normal livers were not statistically significant (P = 0.132 and P = 0.174, respectively).

In addition, we noticed significant correlation between the oh⁸dG content in livers and serum ALT concentration (r = 0.51; P < 0.001; Fig. 2). This correlation was persistently observed even when the effect of the transcatheter arterial embolization or the transluminal arterial infusion of anticancer drugs on the oh⁸dG level was taken into account by analysis of covariance.

Persistent infection of either HBV or HCV is epidemiologically associated with the development of HCC. Thus, we evaluated the difference in the oh⁸dG level in livers with the evidence of HBV and/or HCV infection (Table 1). There were no significant differences in the oh⁸dG level between the HBV-positive group and the HCV-positive group. There was no case which was positive for both HBV and HCV in this study. The oh⁸dG level in one case with no evidence of HBV and HCV infection was 2.94, which was similar to those in the virus-positive groups. Neither the multifocality (15) of tumors nor the histological grade of tumors proved to have a significant difference among the oh⁸dG levels in the surrounding noncancerous liver tissues. Thus, correlation of the serum ALT unit with the oh⁸dG level

Received 1/21/94; accepted 4/20/94.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported in part by a Grant-in-Aid from the Ministry of Health and Welfare for a Comprehensive 10-year Strategy for Cancer Control and Grants-in-Aid from the Ministry of Health and Welfare and from the Ministry of Education, Science, and Culture of Japan. R. S. is a recipient of Research Resident Fellowships from the Foundation for Promotion of Cancer Research.

2 To whom requests for reprints should be addressed.

3 The abbreviations used are: HCC, hepatocellular carcinoma; oh⁸dG, 8-hydroxydeoxyguanosine; δG, deoxyguanosine; HBV, hepatitis B virus; HCV, hepatitis C virus; ALT, alanine aminotransferase.
Oxidative DNA damage in livers with chronic hepatitis


Table 1 8-hydroxydeoxyguanosine (8-hydroxydG) content in DNA of the liver with persistent viral infection

<table>
<thead>
<tr>
<th>Type of tissue</th>
<th>8-hydroxydG/10^8 dG</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBV positive</td>
<td>3.22 ± 0.94b</td>
</tr>
<tr>
<td>HCV positive</td>
<td>2.71 ± 0.39b</td>
</tr>
</tbody>
</table>

HCV positive

8-hydroxydG content in liver DNA of the liver with persistent viral infection.

Fig. 1. 8-hydroxydG content in human livers under various conditions. Individual data is shown with a filled oval, and the mean ± SE in each group is indicated at the bottom.

Fig. 2. Correlation of the 8-hydroxydG content in livers with the serum ALT concentration. Individual data is shown with an open oval.

doing of murine livers (16, 17). Hence, we now obtained the evidence showing that tissue inflammation in the liver generates oxidative DNA damage, leading to genomic instability, and that chronic hepatitis is a potent mutagenic stage for liver cells. Clinically, high correlation of serum ALT concentration with the 8-hydroxydG content may imply that the treatment of chronic liver disease to repress serum ALT concentrations might reduce genomic instability by decreasing the 8-hydroxydG content in the liver.
Increased Formation of Oxidative DNA Damage, 8-Hydroxydeoxyguanosine, in Human Livers with Chronic Hepatitis

Ryuya Shimoda, Makoto Nagashima, Michiie Sakamoto, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/54/12/3171

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.