ABSTRACT

Monoterpenes, including limonene and its in vivo rat plasma metabolites, have been shown to be inhibitors of protein isoprenylation of small G proteins, including p21 ras. In addition, dietary limonene has been shown to be capable of preventing the development and causing the regression of chemically induced mammary carcinomas, many of which contain activated ras oncogenes. On the basis of these observations, it was hypothesized that a possible mechanism by which limonene exerts its effects on the chemoprevention and regression of mammary tumors involves the inhibition of protein isoprenylation of the small G protein p21. In the first study, we asked whether dietary limonene was able to prevent the development of mammary carcinomas which were induced using direct retroviral gene transfer of v-Ha-ras into the mammary parenchyma in situ. LImonene modified neither the rate of gene transfer nor the stability of gene expression. However, limonene did greatly inhibit the formation of mammary carcinomas induced by the insertion of activated ras.

In a follow-up study, we asked whether chemoprevention by limonene was preferentially effective against a subset of chemically induced mammary carcinomas with activated ras. Rats were fed limonene to prevent the development of N-nitroso-N-methylurea-induced mammary tumors, a majority of which contain the activated Ha-ras oncogene. As expected, limonene administration increased the latency period and lowered the frequency of mammary carcinoma development as compared to controls. However, tumor characterization revealed that limonene treatment did not alter the percentage of carcinomas with activated ras. These studies are consistent with the above studies in that limonene is effective in preventing mammary carcinomas with activated ras. Interestingly, carcinomas without activated ras were prevented to the same extent as those with the activated oncogene.

INTRODUCTION

The posttranslational modification of cellular proteins by isoprenylation is an important mechanism by which the subcellular localization of specific proteins is specified. The subset of isoprenylated proteins include many small G proteins, nuclear matrix components, and other important molecules (1). The isoprenylation of proteins is accomplished by the enzymatically catalyzed covalent linkage of either farnesyl or geranylgeranyl to the carboxyl terminus via a cysteine residue (1). Interfering with this posttranslational protein modification has been shown to perturb cellular physiology. For example, when the isoprenylation of the small G protein-activated ras was prevented by site-specific mutation of the cysteine at the prenylation site, this oncogenic protein could not associate with the plasma membrane and subsequently was unable to cause cellular transformation (2). On the basis of observations of this sort, the protein prenyltransferases have been suggested as potential targets for both cancer prevention and therapy (3, 4).

Several agents have been identified that specifically block protein prenylation. Among these are a series of monoterpenes including limonene and its in vivo metabolites which block both protein farnesylation and geranyl geranylartion (5, 6). More recently, compounds which selectively block protein farnesylation have also been reported (4). The monoterpenes, however, are the first specific inhibitors of protein prenylation which have been shown to be efficacious in preventing and treating cancer in vivo. For example, limonene was shown to prevent both 7,12-dimethylbenz(a)anthracene- (7, 8) and NMu3-initiated (9) rat mammary carcinomas. LImonene is also capable of causing the complete regression of the majority of advanced primary rat mammary carcinomas without significant toxicity (10–12). A Phase I trial of limonene in patients with advanced cancer is currently under way (13).

In addition to selectively blocking the isoprenylation of small G proteins, monoterpenes have also been shown to have additional cellular effects, including the inhibition of CoQ synthesis (14) and the induction of various growth factors and growth factor receptors (12). It is thus possible that the monoterpenes may act through a select subset or a combination of these or other cellular activities. Here we ask whether limonene can prevent the formation of mammary carcinomas that are specifically initiated by the retroviral vector transfer of activated ras in situ mammary cells (15).

MATERIALS AND METHODS

Animals and LImonene Administration. Female Wistar-Furth rats (Harlan-Sprague-Dawley, Inc., Madison, WI) housed under a 12-h light/12-h dark cycle were fed a modified AIN-76A diet (TD No. 85821; Teklad, Madison, WI) ad libitum upon arrival. Rats which were to receive retroviral infusions were randomly assigned to groups fed either control or 5% limonene-supplemented diet. The limonene diet was fed to these rats from 2 weeks prior to infusion through the end of the experiment. The rats which were to receive NMu were assigned to either control or 5% limonene diet 1 week post-NMu administration and continued on these diets until the end of the experiment. All rats in both studies were fed fresh diet three times/week. LImonene (Aldrich, Milwaukee, WI; >99% pure by gas chromatography analysis) was directly added to the AIN-76A diet (w/w ratio) and allowed to mix for approximately 20 min. Fresh diets were made every 7–10 days and stored at −20°C.

v-Ha-ras Mammary Carcinogenesis Study. The details for pJR-gal and pJR-ras construction have been described previously (15, 16). These vectors contain the coding sequences for β-galactosidase or the v-Ha-ras oncogene, with expression driven by the Moloney murine leukemia virus long terminal repeat. In addition, these vectors contain a neomycin resistance (neo°) gene driven by an internal SV40 early promoter to provide a G418 selection marker. pJR-gal and pJR-ras were transfected into 293 cells by calcium phosphate precipitation. Ecotropic virus was harvested from these cells and used to infect the amphotropic packaging cell line PA317. The virus stocks from PA317 were thawed virus stocks were mixed with 80 g/ml polybrene and 2 mg/ml Indigo

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. 1 Supported by USPHS, NH Grant CA38128. 2 To whom requests for reprints should be addressed, at University of Wisconsin-Madison, Department of Human Oncology, 600 Highland Avenue, Madison, WI 53792.
control diet groups. These diets were fed until the end of the experiment.

| 49x-235 | blunt-ended needle. Approximately 15 μl of virus suspension were infused into the luminal spaces. This volume was sufficient to fill the mammary gland without disrupting the mammary ductal structure.

The first retroviral infusion study was designed to determine whether the mammary cell genome of limonene-fed rats incorporated the virally encoded sequences at a similar frequency and with a similar stability as observed in control rats. Two groups of six rats each were fed either 5% limonene diet or control diet. After 2 weeks on the diets, mammary glands from rats in both groups were infused i.d. with pJR-gal vector at a virus titer of 5 × 10^7 colony-forming units/ml following perphenazine treatment. The rats continued on their respective diets and mammary glands from 3 control and 3 limonene-fed rats were removed at either 3 days or 1 month after virus infusion. The rat mammary epithelial cells were isolated, allowed to adhere to plastic dishes, stained with X-gal, and scored for β-galactosidase activity by methods described previously (15).

For the v-Ha-ras carcinogenesis study, 44 rats were randomly assigned to either 5% limonene or control diet groups. Two weeks later, all the rats were infused i.d. with pJR-ras vector at a virus titer of 5 × 10^7 colony-forming units/ml. All rats continued to receive limonene or control diet for the entire experiment and were palpated for mammary tumors weekly.

**RESULTS**

**pJR-gal/Limonene Study.** In order to determine whether limonene was able to modify the incorporation rate or stability of a retroviral vector, a vector containing β-galactosidase was used to infect limonene-treated or control rat mammary glands. Mammary epithelial cells were then examined for β-galactosidase activity at either 3 days or 1 month after vector infusion. The proportion of cells expressing β-galactosidase activity at 3 days after infusion was 5.6 × 10^-3 for limonene-treated cells and 6.7 × 10^-3 for controls. At 1 month after infusion, the proportions were 10.9 × 10^-3 and 8.7 × 10^-3 for limonene-fed rats and controls, respectively. The data from this study thus indicate that approximately 0.6% of the mammary epithelial cells of the infused glands expressed the β-galactosidase in both the limonene-fed and control groups. This expression was stable for at least 1 month, suggesting that limonene does not affect the rate of incorporation or the stability of retrovirally inserted genes. This level of incorporation and stability is consistent with that reported previously (15).

**pJR-ras/Limonene Study.** For the rats infused with the pJR-ras retrovirus, body weight data was collected at two time points in this experiment. On the day of infusion, limonene-fed rats (n = 21) had an average body weight of 134.3 ± 7.7 (SD) g as compared to controls (n = 22), the average body weight of which was 174.0 ± 26.9 g. This weight difference was mostly likely due to an initial food aversion observed in rats fed limonene. By 41 days after infusion, limonene-fed rats weighed 188.0 ± 9.8 g, while controls weighed 198.0 ± 11.3 g.

Mammary tumors (≥3 mm in diameter) were detected by palpation within 5 weeks postinfusion in the control rats. For rats fed limonene, the latency time to first tumor development was 135.0 days as compared to a control group tumor latency of 83.5 days (P = 0.04, survival analysis/log rank test). Decreases were also observed in the percentage of limonene-treated rats with one or more tumors (Fig. 1). The median number of mammary tumors detected by palpation in limonene-treated rats was 1.0 tumors/rat as compared to 4.0 for control rats (P = 0.01, Mann-Whitney nonparametric test) (Fig. 2). At 18 weeks postinfusion, all rats were removed from the study and complete necropsies were performed. Many additional tumors were observed in rats fed limonene. By 41 days after infusion, limonene-fed rats had an average body weight of 134.3 ± 7.7 (SD) g as compared to controls (n = 22), the average body weight of which was 174.0 ± 26.9 g.
Fig. 3. Effects of dietary limonene on weight gain. Mean body weight in grams ± SEM (bars) is plotted versus weeks after diet assignment: 5% limonene diet (○, n = 24 rats) and control diet (□, n = 24 rats).

Fig. 4. Mammary tumor latency. The percentage of rats with a palpable tumor induced by NMU is plotted versus weeks postcarcinogen treatment for limonene-fed rats (---, n = 24) and controls (----, n = 24).

Fig. 5. Prevention of multiple tumors by dietary limonene. The average number of mammary tumors/rat is plotted versus time after NMU administration for limonene-fed (---, n = 24) and control (----, n = 24) rats.

Fig. 6. Number of mammary carcinomas with ras activation. The average number of tumors per rat in each group with ras activation via a codon 12 mutation.

LIMONENE CHEMOPREVENTION OF ras CARCINOMAS

We have previously reported that the monoterpen limonene can prevent and treat chemically induced rat mammary carcinomas (7–12). It has been shown that these chemically induced tumors are heterogeneous for ras activation. In NMU-induced tumors, 20–90% have Ha-ras activation, with the actual percentage being inversely related to NMU dose (19, 20). In contrast, less than 25% of 7,12-dimethylbenz(a)anthracene-induced tumors have activated Ha-ras (20). Although these tumors are classified as adenocarcinomas based

detected at necropsy that were not previously palpated. The final tumor frequency in control rats was 7.6 tumors/rat whereas only 1.2 tumors/rat were found in limonene-fed rats. All mammary tumors were examined histologically and all were classified as mammary carcinomas.

NMU/Limonene Study. In this study, a single i.v injection of 30 mg/kg of NMU was used to induce rat mammary carcinomas. One week after NMU administration, all rats were randomly assigned to continue on the AIN-76A purified diet or switch to 5% limonene-AIN-76A diet until the end of the experiment at 30 weeks post-NMU administration. Body weights of the rats were determined weekly (Fig. 3). As consistently observed in limonene-fed rats, there was an initial weight loss, most likely due to food aversion, followed by weight gain comparable to rats fed control diet ad libitum.

At week 30, 54% of the rats fed 5% limonene diet had developed at least 1 palpable mammary tumor as compared to 82% of controls (Fig. 4). This level of dietary limonene was also capable of reducing the average number of tumors/rat by over 50% (Fig. 5). All of the tumors were histologically examined and classified as mammary carcinomas.

Analysis of c-Ha-ras codon 12 activation was conducted for 77 tumors, 51 obtained from control and 26 from limonene-fed rats. Of the control tumors, 25 of 51 (49%) had H-ras activation via a codon 12 mutation, whereas 13 of 26 (50%) of the tumors arising in limonene-treated rats had this activating mutation (Fig. 6).
on occasional local invasion, they are, in general, less invasive and less aggressive than their human counterpart. In contrast to the chemical induction of rat mammary tumors, we have developed a rat model in which a gene of interest can be placed directly into the mammary parenchyma in situ using retroviral vectors (15). This methodology has several advantages over both transgenic and carcinogen-induced models for mammary carcinogenesis and chemoprevention studies (21). Using this vector model, we subcloned v-Ha-ras into the JR vector and infused it directly into the mammary duct. Rats receiving this vector develop clonal mammary cancer which originates from infected cells (15). The mammary adenocarcinomas that arose were more aggressive than chemically induced tumors. They more frequently invade surrounding tissue, are more readily transplantable, and also metastasize to distant sites (15, 16) as compared to chemically induced tumors.

In the present study, we asked whether limonene could prevent mammary carcinomas induced by the activated ras oncogene v-Ha-ras. We chose to study this oncogene because data from our previous studies showed that monoterpene such as limonene and its metabolites could inhibit the isoprenylation of p21-ras (5, 6). Rats receiving a dietary dose of limonene that was less than 50% of a minimally toxic dose exhibited both extended latency and reduced frequency of ras-induced mammary carcinoma development. Thus, limonene is effective in preventing ras-initiated mammary carcinomas. However, it is not known if this preventative activity of the terpene directly involves their modification of ras processing.

In addition to this specific result, this study represents the first demonstration of the utility of this retroviral gene transfer-mammary carcinogenesis model for chemoprevention screening and mechanistic studies. We believe that this model will be of general utility for testing chemoprevention agents and also will be adaptable to other dominant oncogenes.

We extended the above v-Ha-ras study to ask whether tumors with endogenous activated ras were selectively prevented by dietary monoterpene. Tumors were induced with the directly acting carcinogen NMU and limonene was used to partially suppress tumor development. All tumors that occurred in the control and terpene-treated animals were analyzed for ras activation. We predicted that if mammary carcinomas with activated ras were a preferential tumor subpopulation for prevention, then limonene would be more effective at inhibiting the formation of carcinomas with ras activation. This would result in a lower percentage of tumors with ras activation in the terpene-treated group in comparison to the control group. This prediction was not realized, suggesting that limonene does not selectively prevent carcinomas with ras activation. This carcinoma subpopulation is not a specific tumor type at which the preventive effects of limonene are focused.

REFERENCES


Downloaded from cancerres.aacrjournals.org on January 2, 2018. © 1994 American Association for Cancer Research.
Limonene Chemoprevention of Mammary Carcinoma Induction following Direct in Situ Transfer of v-Ha-ras

Michael N. Gould, Cynthia J. Moore, Rong Zhang, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/54/13/3540

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/54/13/3540.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.