Induction of Apoptosis by Quercetin: Involvement of Heat Shock Protein

Yu-quan Wei, Xia Zhao, Yoshitaka Kariya, Hideki Fukata, Keisuke Teshigawara, and Atsushi Uchida

Department of Late Effect Studies, Radiation Biology Center, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-01, Japan

ABSTRACT

Quercetin, a widely distributed bioflavonoid, inhibits the growth of tumor cells. The present study was designed to investigate the possible involvement of apoptosis and heat shock protein in the antitumor activity of quercetin. Treatment with quercetin of K562, Molt-4, Raji, and MACS tumor cells resulted in morphological changes, including propidium iodide-stained condensed nuclei (intact or fragmented), condensation of nuclear chromatin, and nuclear fragmentation. Agarose gel electrophoresis of quercetin-treated tumor cells demonstrated a typical ladder-like pattern of DNA fragments. In addition, the hypodiploid DNA peak of propidium iodide-stained nuclei was revealed by flow cytometry. Quercetin induced apoptosis in cells at G1 and S in a dose- and time-dependent manner. The apoptosis-inducing activity of quercetin was enhanced by cycloheximide and actinomycin D. A neclease inhibitor, aurintricarboxylic acid, inhibited quercetin-induced apoptosis, whereas deprivation of intracellular calcium by EGTA had no effect. 12-O-Tetradecanoylphorbol-13-acetate and H-7 did not affect the induction of apoptosis by quercetin. The synthesis of HSP70 was inhibited by quercetin when determined by immunocytochemistry, Western blot analysis, and Northern blot analysis. Quercetin-treated tumor cells were not induced to show aggregation of HSP70 in the nuclei and nucleolus in response to heat shock, resulting in apoptosis. By contrast, when tumor cells were first exposed to heat shock, no apoptosis was induced by quercetin. In addition, pretreatment of tumor cells with HSP70 antisense oligomer that specifically inhibited the synthesis of HSP70 enhanced the subsequent induction of apoptosis by quercetin. These results suggest that quercetin displays antitumor activity by triggering apoptosis and that HSP70 may affect quercetin-induced apoptosis.

INTRODUCTION

Cell death in a multicellular organism can occur by two distinct mechanisms, apoptosis or necrosis (1–3). The apoptosis plays an important role in embryonic development, metamorphosis, hormone-dependent atrophy, and tumor growth as a physiological event regulating the cell number or eliminating damaged cells (1–11). Cells undergoing apoptosis are characterized by reduced cell volume, condensed chromatin in the nucleus, formation of internucleosomal DNA fragmentation, and loss of membrane integrity, as well as generation of apoptotic bodies (1, 4, 7). The mechanism underlying this type of cell death is, however, not thoroughly understood (1, 3, 5–7, 9). Previous studies have shown that this cell death involves an active participation of the affected cell in its self-destruction via activation of specific genes and synthesis of new proteins (3, 5).

Recent studies have demonstrated that apoptosis may be involved in cell death induced by chemotherapeutic agents including cisplatin, cytarabine, camptothecin, amsacrine, etoposide, and teniposide (1, 2, 6, 10–13). There is accumulating evidence that the efficacy of anti-tumor agents is related to the intrinsic propensity of the target tumor cells to respond to these agents by apoptosis (1–3, 5, 6, 13, 14). Quercetin, 3,3',4',5,7-pentahydroxy flavone, is one of most widely distributed bioflavonoids in the plant kingdom (15–20) and is a component of most edible fruits and vegetables. While humans consume approximately 1 g of flavonoid daily in the diet, quercetin is hardly absorbed and passes through the gastrointestinal tract. Quercetin inhibits the growth of malignant cells through various mechanisms: inhibition of glycolysis, macromolecule synthesis and enzymes; freezing cell cycle; and interaction with estrogen type II binding sites (15–20). In addition, the flavone inhibited the induction of heat shock proteins and thermosterilance without affecting other protein synthesis (15, 16, 18). The exact mechanisms responsible for the antitumor effect of quercetin, however, is not thoroughly understood yet. The present study was designed to investigate whether quercetin exerts cytotoxic activity against tumor cells by inducing apoptosis and to examine the possible role of heat shock proteins in the phenomenon.

MATERIALS AND METHODS

Agents. Quercetin was purchased from Nacalai Tesque (Kyoto, Japan). An inhibitor of the catalytic site of protein kinase H-7, [1-(5-isoquinolinesulfonyl)-2-methyl-piperazine dihydrochloride]; a protein kinase C activator, TPA; a protein synthesis inhibitor, cycloheximide; an RNA synthesis inhibitor, actinomycin D; and a calcium chelator, EGTA; were obtained from Sigma Chemical Co. An endonuclease inhibitor, ATA, was from Kanto Chemical (Tokyo, Japan). Final concentrations of solvent (dimethyl sulfoxide) used were less than 0.2% and were not found to affect apoptosis.

Cell Culture and Quercetin Treatment. The K562 human chronic myeloid leukemia, Molt-4 acute T-lymphocytic leukemia, Raji Burkitt lymphoma, and MACS mucinous cystadenocarcinoma of ovary cell lines were used in the present study. Exponentially growing cells were exposed to varying concentrations of quercetin for varying time intervals.

Assessment of Apoptosis. Cell viability was determined by a trypan blue dye exclusion test. Morphological analysis of apoptosis was performed after Wright-Giemsa staining under a light microscope and after staining with PI under fluorescence microscopy (4).

The pattern of DNA cleavage was analyzed by agarose gel electrophoresis as described (11, 13). Briefly, cells (3 X 10^6) were lysed with 0.5 ml lysis buffer (5 mM Tris-HCL (pH 8), 0.25% Nonidet P-40, and 1 mM EDTA), followed by the addition of RNase A (Sigma) at a final concentration of 200 µg/ml, and incubated for 1 h at 37°C. Cells were then treated with 300 µg proteinase K/ml for an additional h at 37°C. After digestion of DNA, cell nuclei were subjected to electrophoresis on a 1.5% agarose gel. The DNA fragmentation was then visualized under ultraviolet light. A characteristic ladder-like pattern of DNA fragments was observed.

Received 4/21/94; accepted 7/20/94.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom requests for reprints should be addressed.

2 The abbreviations used are: TPA, 12-O-tetradecanoylphorbol-13-acetate; ATA, aurintricarboxylic acid; HSP, heat shock protein; ABC, avidin biotin complex; PI, propidium iodide.
antisense oligomer (5′-CGCGGCTTTGCCCAT-3′) was complementary to the initiation codon and four downstream codons of human HSP70 mRNA (22). The corresponding sense oligomer (5′-ATGGCCAAAGCAGCCG-3′) and non-sense oligomer (5′-CGGGTATGCTCCGCC-3′) were used as controls. The specific inhibition of HSP70 expression in tumor cells by this antisense oligomer was analyzed by Western blot, quantitative immunofluorescence, and Northern blot methods.

Intracellular distribution of HSP was analyzed by indirect immunoperoxidase staining of either single cell suspensions fixed on slides or on tissue culture chamber slides (23). Briefly, cells were fixed with paraformaldehyde, permeabilized with Triton X-100, washed, and incubated with glycine-containing phosphate-buffered saline. Monoclonal antibodies used as the first antibody in an ABC method were anti-HSP25 (clone IAP-9; Sigma), anti-HSP70 (clone BRM-22; Sigma), and anti-HSP90 (Funakoshi, Tokyo).

**Western Blot Analysis.** Western blot analysis was performed as described previously (24). Briefly, 5 × 10⁶ cells were lysed in 1 ml lysis buffer, and the protein concentration was determined by the bicinchoninic acid protein assay reagent. The samples were denatured in sample buffer, and the proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gels were electroblotted with Sartoblot onto a polyvinylidene difluoride membrane. The membrane blots were rinsed with TTBS [20 mM Tris, 500 mM NaCl, 0.05% Tween-20, pH 7.5] and blocked by 3% gelatin. The blots were incubated first with anti-HSP70 monoclonal antibody and then with a biotinylated second antibody, followed by a transfer to VECTASTAIN ABC. 3,3′-diaminobenzidine substrate kits for horseradish peroxidase (Vector Laboratories) were used for development of color.

**Northern Blot Analysis.** Total cellular RNA was isolated from tumor cells by guanidinium thiocyanate–calcium chloride method with minor modification, as described previously (15, 16). Equal amounts (20 µg) of total RNA were electrophoresed in formaldehyde-containing agarose gels, transferred to a nitrocellulose membrane, and hybridized with γ-32P-labeled probes for HSP70 (Oncogene Science) or β-actin as an internal control.

**RESULTS**

**Induction of Apoptosis by Quercetin.** Treatment with quercetin of tumor cells resulted in morphological changes characteristic for apoptosis: a brightly red-fluorescent condensed nuclei (intact or fragmented) by fluorescence microscopy of PI-stained nuclei, blebbing, reduction of cell volume, condensation of nuclear chromatin, nuclear fragmentation, and apoptotic bodies (Fig. 1). Agarose gel electrophoresis of quercetin-treated cells demonstrated a ladder-like pattern of DNA fragments consisting of multiples of approximately 180–200 base pairs, consistent with internucleosomal DNA fragmentation (Fig. 2). The apoptosis-inducing effect of quercetin was dose- and time-dependent, being observed at 1 µM and reaching a maximum at 200 µM.

By the use of flow cytometry, we could unequivocally assess the number of hypodiploid cells (apoptotic cells) and cells with diploid DNA content (nonapoptotic cells). Results obtained in flow cytometry strongly correlated with those in classical DNA fragmentation assays. DNA fragmentation in agarose gel electrophoresis, and cell counting with PI-staining fluorescence microscopy. A relative apoptotic index in flow cytometry varied from 0.91 to 0.96. Therefore, the quantitative assessment of hypodiploid cells by flow cytometry was used to estimate the number of apoptotic cells (Fig. 3).

**Cell Cycle Specificity of Quercetin-induced Apoptosis.** Cell cycle specificity of apoptosis induced by quercetin was analyzed by DNA fluorescence histogram. The number of G₁ and S cells among total cells (including apoptotic and nonapoptotic cells) decreased when hypodiploid cells increased in number by elevation of quercetin doses and prolongation of incubation time (Fig. 4). Similar results were obtained in all cell lines tested.

**Effects of Various Agents on Quercetin-induced Apoptosis.** Possible roles of protein and RNA synthesis in quercetin-induced apoptosis were considered. When tumor cells were first treated with cycloheximide or actinomycin D and then treated with quercetin for an additional 24 h in the presence of these agents, the number of hypodiploid cells increased in number (Table 1). The enhancement was dependent on doses of cycloheximide and actinomycin D (data not shown). Cycloheximide or actinomycin D alone also induced apoptosis. By contrast, an endonuclease inhibitor, ATA, inhibited the quercetin-induced apoptosis in a dose-dependent manner, as determined by flow cytometry and ethidium bromide-stained agarose gel analysis (Fig. 2). Deprivation of intracellular calcium by EGTA did not inhibit quercetin-induced apoptosis. Apoptosis induced by quercetin was not affected by an activator (TPA) or an inhibitor (H-7) of protein kinase C.

**Roles of HSP70 in Quercetin-induced Apoptosis.** In an attempt to explore the role of heat shock proteins in quercetin-induced apoptosis, we tested the effects of quercetin on the synthesis and intracellular distribution of heat shock proteins. When tumor cells were...
Fig. 3. DNA fluorescence histograms of PI-stained K562 in FL2-H. Cells were treated with varying doses of quercetin for 48 h. A, control. B, 1 μM. C, 25 μM. D, 50 μM. E, 100 μM. F, 150 μM. G, 200 μM.

Fig. 4. Cell cycle specificity of quercetin-induced hypodiploid cells in DNA fluorescence histogram of FL2-A. K562 cells were treated with varying doses of quercetin for 20 h (A) or with 100 μM quercetin for varying time intervals (B). Results are expressed as means of triplicate samples; bars, SD.

treated with quercetin for at least 5 h and subsequently exposed to heat shock at 42°C, hypodiploid cells increased in number (Fig. 5). By contrast, the number of hypodiploid cells decreased when tumor cells were first heated and then treated with quercetin.

In the next set of experiments, intracellular localization of HSP70 was determined by immunohistochemical staining. HSP70 was localized in the cytoplasm and nuclei but not in nucleolus of untreated tumor cells (Fig. 6). Exposure to heat shock at 42°C resulted in
Table 1  Effects of various agents on the induction of hypodiploid cells by quercetin

K562 cells were pretreated with various agents for 2 h and then treated with 100 μM quercetin for an additional 24 h. Numbers of hypodiploid cells were calculated by DNA fluorescence histograms. Results are expressed as means ± SD of triplicate samples.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control</th>
<th>Quercetin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>2.3 ± 1.1</td>
<td>40.1 ± 2.4</td>
</tr>
<tr>
<td>Actinomycin</td>
<td>19.3 ± 3.2</td>
<td>91.2 ± 5.6</td>
</tr>
<tr>
<td>DTA</td>
<td>4.3 ± 3.4</td>
<td>37.3 ± 3.2</td>
</tr>
<tr>
<td>HPA</td>
<td>5.3 ± 3.4</td>
<td>8.6 ± 3.6</td>
</tr>
<tr>
<td>H7</td>
<td>6.5 ± 2.4</td>
<td>42.3 ± 3.6</td>
</tr>
<tr>
<td>EGTA</td>
<td>5.4 ± 4.5</td>
<td>39.5 ± 4.2</td>
</tr>
</tbody>
</table>

Values are significantly different from those of controls according to t test at P < 0.01.

Fig. 5. Effects of heat shock on quercetin-induced hypodiploid cells. Q+H, K562 cells were first treated with 100 μM quercetin for 5 h, washed, heated at 42°C for 1 h, and finally treated with quercetin for 20 h. Q, 25-h treatment with quercetin. H, cells were exposed to heat shock and incubated at 37°C for 25 h. H+Q, cells were first exposed to heat shock and then treated with quercetin for 25 h. Control, untreated. Hypodiploid cells were determined by DNA fluorescence histogram. Results are expressed as means of triplicate samples; bars, SD.

Fig. 6. Effects of heat shock and quercetin on intracellular HSP70. HSP70 in MACS was determined by immunocytochemical staining (ABC) on cell culture chamber slides (not counterstained by hematoxylin; × 800). a, untreated. b, 2 h after heat shock. c, 5-h treatment with 100 μM quercetin. d, 5-h treatment with quercetin, followed by 1-h exposure to heat shock and 2-h recovery.
heat shock by HSP70 aggregation in the nuclei and nucleolus, with no or low apoptosis; (c) quercetin-treated cells showed no accumulation of HSP70 in the nuclei and nucleolus in response to heat shock; (d) exposure to heat shock induced considerable amounts of HSP70 in tumor cells, which in turn became unresponsive to quercetin; (e) treatment with HSP70 antisense oligomer of tumor cells inhibited HSP70 expression, which in turn resulted in an enhanced induction of apoptosis by quercetin.

It has been reported that the inhibition of RNA and/or protein synthesis abrogates the induction of apoptosis (1, 4, 7, 11). In other systems, however, the induction of apoptosis was not prevented by actinomycin D and cycloheximide (5). In the present study, the apoptosis-inducing effect of quercetin was augmented by actinomycin D and cycloheximide, the mechanism responsible for which is not understood yet. Cycloheximide was shown to inhibit the acquisition of thermostolerance, in which heat shock proteins are mainly involved (16, 18, 26). We are currently investigating the synergistic apoptosis-inducing effect of quercetin and cycloheximide or actinomycin D at the level of mRNA or protein synthesis.

In conclusion, the data presented in this report strongly indicate that quercetin induces apoptosis in tumor cells through inhibition of HSP70 synthesis and expression. These findings may be of importance to explore further the role of heat shock proteins in the growth and metabolism of tumor cells, to search for new antitumor agents by inhibiting heat shock protein synthesis, and to enhance the efficacy of hyperthermia by blocking HSP70 synthesis.

REFERENCES

17. Scambia, G., Ranelliti, F. O., Benedetti Panici, P., Piantelli, M., De Vincenzo, R., Ferrandina, G., Bonanno, G., Capelli, A., and Mancuso, S. Quercetin induces type-II estrogen-binding sites in estrogen-receptor negative (MDA-MB231) and estrogen-


Induction of Apoptosis by Quercetin: Involvement of Heat Shock Protein

Yu-quan Wei, Xia Zhao, Yoshitaka Kariya, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/54/18/4952

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.