Potential Use of Soluble CD44 in Serum as Indicator of Tumor Burden and Metastasis in Patients with Gastric or Colon Cancer

Ya-Jun Guo, Guangluo Liu, Xiaoning Wang, Dadi Jin, Mengchao Wu, Jing Ma, and Man-Sun Sy

Institute of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106; Eastern Institute of Hepatobiliary Surgery and Eastern Hospital for Hepatobiliary Surgery, Shanghai 200433; Nantong Immunology and Bio-Technology Center, Nantong University, Tongji, Guangzhou 510515, X. W. D. J., Peoples Republic of China

ABSTRACT

Soluble CD44 is present in the serum of normal individuals (2.7 ± 1.1 ng/ml). The concentration of soluble CD44 in the serum is elevated in patients with advanced gastric (24.2 ± 9.8 ng/ml) or colon cancer (30.8 ± 11 ng/ml). Serum CD44 concentration correlated with tumor metastasis and tumor burden. Surgical resection of tumors resulted in decreases in serum CD44 levels. By Western blot analysis, monoclonal anti-CD44 antibody reacted with a major protein with molecular weight between 130,000 and 190,000. In addition, two proteins with molecular weights of 72,000 and 80,000 can also be identified. Therefore, different CD44 isoforms may be present in the serum of cancer patients. Serum CD44 concentrations may be an indicator of tumor burden and metastasis in patients with malignant diseases.

INTRODUCTION

CD44 is a glycoprotein present in many cell types. Monoclonal antibodies against CD44 recognize Mr 80,000–90,000 glycoproteins on human lymphoid cells (1–4). The complementary DNA for CD44 has been cloned (5–9). Earlier studies revealed that there were two isoforms of CD44 based on their mRNA sizes and the molecular weights of the proteins. The first form is expressed in hematopoietic cells and has a protein product with a molecular weight of 80,000–90,000 (5–9). A soluble form of this CD44 isoform has been reported to be present in normal serum and in the synovial tissue of patients with rheumatoid arthritis (10, 11). The second isoform is a protein with a molecular weight of 130,000–160,000 expressed weakly in normal epithelium but highly expressed in some carcinomas (8, 9). Most of the carcinomas examined expressed both isoforms of CD44. The Mr 130,000 CD44 isoform contains 120 amino acid more than the Mr 90,000 CD44 in the extracellular portion of the molecule near the transmembrane region (8, 9). Keratinocytes express another CD44 isoform protein with a molecular weight of about 230,000 (12). Recent data suggest that there are at least nine isoforms of CD44 generated by differential splicing of the mRNA (13). The hematopoietic form of CD44 in lymphoid cells represents the basic unit of the CD44 proteins. The other isoforms were created by alternative splicing of the mRNA and the addition of new exons into the extracellular domain near the transmembrane region of the hematopoietic CD44 (13).

The sequence homology between extracellular domains of CD44 and macromolecules of the cellular matrix suggests a general role for CD44 in proteoglycan or collagen mediated matrix adhesion (14, 15). This hypothesis was supported by recent findings that one of the ligands for CD44 is hyaluronic acid (16, 17). Hyaluronic acid is a polymer consisting of repeating disaccharide units of N-acetyl-d-glucosamine and d-glucuronic acid (18). Hyaluronic acid is a major constituent of the extracellular matrix and is believed to create a low resistance matrix, allowing enhanced cell motility. A microenvironment in which cells can migrate is essential for embryonic development and wound repair and is probably important for lymphocyte homing and tumor metastasis (20–22).

CD44 may play an important role in tumor growth and metastasis. Many of the primary carcinoma specimens examined expressed high levels of CD44 (8). Highly invasive human bladder carcinoma cells express high levels of CD44. The noninvasive bladder carcinoma cell line expresses low levels of CD44 (23). Transformation of fibroblasts with SV40 or Rous sarcoma virus increased the expression of CD44 (24, 25). We established two human melanoma cell lines, SMMU-1 and SMMU-2, from a patient with melanoma. SMMU-1 is CD44+ and SMMU-2 is not. SMMU-1 is metastatic in SCID mice when injected s.c. while SMMU-2 is not. A high expression of CD44 is associated with aggressive behavior, dissemination, and poor prognosis of human non-Hodgkins lymphomas. Unlike the expression of CD44, expression of two other adhesion molecules, LFA-1 and ICAM-1, was not found to be a significant factor (26).

Introduction of the human hematopoietic form of CD-44 gene into a CD44+ tumor cell line, Namalwa, resulted in enhancement of tumor growth and metastasis in vivo (27). A rat carcinoma cell line which did not metastasize acquired metastatic properties when transfected with a CD44 gene encoding for a high molecular weight 230,000 CD44 isoform (28, 29). A human homologue of the rat Mr 230,000 CD44 isoform has been shown to be expressed in colorectal carcinomas and adenomatous polyps (30). Analysis of CD44 splice variants in tumor tissues from patients with colon and breast cancer by polymerase chain reaction revealed that there was gross overproduction of the alternatively spliced large molecular weight variants in all tumor tissues examined. In the control samples only the standard product was detected (31, 32). However, using monoclonal antibodies specific for various CD44 isoforms instead of polymerase chain reaction, more recent results revealed that different CD44 isoforms were expressed in many normal tissues, including those from which the tumors arose (33). The reasons for these discrepancies are not known. A colon cancer susceptibility gene in the mouse has been reported to be linked to the CD44 gene on chromosome 2 (34).

In this paper we present preliminary evidence that the concentration of soluble CD44 in the serum is elevated in patients with advanced gastric or colon cancer. Serum CD44 concentration correlated with tumor burden and metastasis of tumors. Surgical resection of tumors resulted in decreases in serum CD44 levels. By Western blot analysis, monoclonal anti-CD44 antibody reacted with a major protein with molecular weight between 130,000 and 190,000. In addition, two less abundant proteins with molecular weights of 72,000 and 80,000 can also be identified. These results suggested the presence of different CD44 isoforms in the serum of cancer patients. Serum CD44 concentrations may be an indicator of tumor burden and metastasis in patients with malignant diseases.
MATERIALS AND METHODS

Monoclonal Antibodies and ELISA for Soluble CD44. Murine anti-human CD44 monoclonal antibodies GKW.A3 (IgG2a) and GKW.7.10 (IgG2b) were generated in our laboratory by immunizing normal BALB/c mice with a human melanoma cell line (SMMU) bearing the hematopoietic form of CD44. Fusion and selection of the monoclonal antibody secreting hybridomas were carried out by using standard B-cell hybridoma techniques. GKW.A3 and GKW.7.10 did not react with the human CD44 negative Burkitt's lymphoma Namalwa, but reacted strongly with Namalwa transfected with the human hematopoietic CD44 gene (results not shown). Another monoclonal anti-CD44 antibody, BU52, was obtained from The Binding Site Limited (San Diego, CA). GKW.A3, BU52, and GKW.7.10 recognize different epitopes on CD44 as revealed by competitive binding experiments and by dual color immunofluorescence staining. BU52, GKW.A3, and GKW.7.10 cannot distinguish different CD44 isoforms and bind to all CD44 isoforms (results not shown).

Sera were obtained from normal individuals or cancer patients and kept at -72°C prior to use for determining serum CD44 levels. We used an ELISA assay we have described earlier to detect soluble CD44 in the circulation (35). Briefly, plastic ELISA plates were first coated with 10 μg/ml of protein A purified GKW.7.10 overnight. Plates were washed extensively. Serum from each patient was serially diluted and added to the plates. Plates were washed extensively and a biotin conjugated protein A purified GKW.A3 was used to react with captured soluble CD44 proteins. Avidin conjugated alkaline phosphatase was added to detect bound GKW.A3. In each assay, a genetically engineered recombinant soluble human CD44 chimeric molecule was used to determine the concentration of soluble CD44 present in each serum. Assays were repeated at least twice with each sample with comparable results. The statistical significance of differences among means was determined by using Student's t tests.

Purification of Soluble CD44 by Immunosorbent Column and Western Blot Analysis of Purified Proteins. An immunoaffinity column was prepared by conjugating protein A purified GKW.A3 to Sephadex 4B. Serum from 3 patients with metastatic colon cancer or from normal donors were pooled. Thirty-five ml of the serum were applied to the column. After extensive washing, bound materials were eluted with glycine HCl buffer (pH3.5). Eluted materials were neutralized immediately to pH 7.0 and were concentrated by negative pressure dialysis. Equal volumes of the samples from cancer patients and normal controls were separated by 7.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Proteins were then transferred to nitrocellulose membranes and blotted with monoclonal anti-CD44 antibodies GKW.7.10 or BU52 or control anti-human CD44 antibody.

RESULTS

Serum CD44 Concentration in Patients with Gastric Cancer. We used an ELISA to determine the concentration of soluble CD44 in the sera of normal individuals and 25 patients with various stages of gastric cancer. In 8 patients, tumors were localized in the stomach and no visible metastatic tumors were found in any other organ. Metastatic tumors were found in at least one other site in the other 17 patients. The age, sex, and pathological findings of these patients are listed in Table 1. The concentration of the soluble CD44 in the sera of controls and gastric cancer patients are presented in Fig. 1. The concentration of soluble CD44 in the serum of age and sex matched normal controls was 2.7 ± 1.1 nm (n = 43). The concentrations of soluble CD44 were elevated in 16 of 17 patients with metastatic gastric cancer. In the 8 patients without metastatic tumors, significantly elevated soluble CD44 concentrations were detected in 5 of the 8 patients. We determined the concentration of soluble CD44 in 15 patients with chronic rheumatic diseases. The concentration of soluble CD44 in these patients were comparable to those found in normal controls (2.2 ± 1.6 nm).

Serum CD44 Concentration in Patients with Colon Cancer. We determined the concentration of soluble CD44 in the sera of 25 pa-

Table 1 Patients with gastric cancer

<table>
<thead>
<tr>
<th>No.</th>
<th>Age</th>
<th>Sex</th>
<th>Tumor (cm)</th>
<th>Metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>M</td>
<td>6</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>M</td>
<td>6.4</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>66</td>
<td>M</td>
<td>6.2</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>M</td>
<td>3.3</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>46</td>
<td>M</td>
<td>5.8</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>51</td>
<td>M</td>
<td>4.6</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>41</td>
<td>F</td>
<td>4.6</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>51</td>
<td>F</td>
<td>3.7</td>
<td>No</td>
</tr>
</tbody>
</table>

LN,* LN, lymph node; PR, peritoneum; Liv, liver; Pan, pancreas; Spl, spleen.

* The abbreviation used is: ELISA, enzyme linked immunosorbent assay.
We also determined the concentration of soluble CD44 in the ascitic fluid of 5 patients with metastatic colon cancers, metastatic colon cancers, and in patients with rheumatic diseases. The numbers represent the average concentration of soluble CD44 in different groups of individuals ± SD. The P value for the difference between CD44 levels in patients with metastatic tumor and normal donor is P > 0.001 (Student’s t test).

![Fig. 2. Soluble CD44 concentration in normal serum, in patients with non-metastatic colon cancers, metastatic colon cancers, and in patients with rheumatic disease. The numbers represent the average concentration of soluble CD44 in different groups of individuals ± SD. The P value for the difference between CD44 levels in patients with metastatic tumor and normal donor is P > 0.001 (Student’s t test).](image)

**DISCUSSION**

We used an ELISA to demonstrate that the concentrations of soluble CD44 were significantly elevated in patients with gastric cancer and colon cancer. Based on a limited number of patients, there was a significant correlation (P > 0.001) between serum CD44 concentration in patients with metastatic cancer and serum CD44 concentration in normal donors. Serum CD44 levels also correlated with tumor burden in vivo. Patients with larger tumors had a higher concentration of soluble CD44 in their serum. Soluble CD44 levels in the sera from patients with chronic rheumatic disease were within normal range.

![Fig. 3. Soluble CD44 concentration in colon cancer patients before and after surgical resection of tumors. Serum soluble CD44 concentrations were determined in 19 patients with various stages of colon cancers before surgery and after surgical resection of tumors. We used an ELISA to demonstrate that the concentrations of soluble CD44 were significantly elevated in patients with gastric cancer and colon cancer. Based on a limited number of patients, there was a significant correlation (P > 0.001) between serum CD44 concentration in patients with metastatic cancer and serum CD44 concentration in normal donors. Serum CD44 levels also correlated with tumor burden in vivo. Patients with larger tumors had a higher concentration of soluble CD44 in their serum. Soluble CD44 levels in the sera from patients with chronic rheumatic disease were within normal range.](image)
brane. Transferred proteins passed through an anti-CD44 immunosorbent column as described in “Materials and Methods.” Bound proteins were eluted and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Separated proteins were transferred to cellulose membrane. Transferred proteins (Lanes a, b, and c were proteins from the serum of cancer patients) were then blotted with two different anti-CD44 monoclonal antibody GKW.7-10 or BU52 (Lanes a and b) or control anti-CD44 monoclonal antibody (Lane c). Lane d, proteins from the serum of normal donors, eluted from anti-CD44 immunosorbent column and blotted with anti-CD44 monoclonal antibody GKW.7-10.

Additional control experiments with serum from patients with inflammatory bowel diseases are in progress.

Soluble CD44 present in the circulation of patients most likely came from tumor cells rather than normal cells. Complete surgical resection of tumor masses from these patients resulted in a significant reduction in their serum CD44 concentration. Surgery or anesthesia alone did not reduce the concentration of CD44 in the serum (results not shown). Treatment with chemotherapy without surgery also resulted in reductions in soluble CD44 concentrations in the circulation (results not shown). Western blot analysis with two different monoclonal anti-CD44 antibodies revealed the presence of a prominent band with molecular weight between 130,000 and 190,000, and two minor bands with molecular weights of 75,000 and 80,000 in the sera from patients with metastatic tumors. Whether there are multiple proteins present in the Mr 130,000 to 190,000 band remain to be determined. In some cancer serum, we were able to identify two different proteins (Mr 130,000 and 190,000) in this region (results not shown). Only one CD44 protein with a molecular weight of about 82,000 was present in normal serum (10).

Elevated serum CD44 levels in these patients may be due to active shedding of CD44 molecules by the tumor cells. Alternatively, dying tumor cells may release CD44 molecules or CD44 on tumor cells may be released into the circulation by some proteolytic enzymatic mechanisms. Preliminary experiments using human tumor cell lines suggest that shedding of CD44 occurs under in vitro conditions (results not shown). The presence of multiple proteins reacting with monoclonal anti-CD44 antibody suggests the presence of different CD44 isoforms in the serum of cancer patients. Alternatively, the smaller molecular weight proteins may be degradation products of a high molecular weight CD44 isoform. Experiments are now in progress to use antibodies specific for each CD44 isoform to determine whether these high molecular weight proteins represent different CD44 isoforms.

We were able to detect low levels of soluble CD44 in sera from normal donors with our ELISA. However, we were unable to detect CD44 in normal serum by Western blot analysis by using our one step purification procedure. In previous studies, a significantly larger volume of normal serum was used for the enrichment of soluble CD44 (10). In addition, multiple purification steps, involving differential sizing and affinity columns, were used in earlier studies (10).

We were unable to detect an elevated soluble CD44 concentration in one patient with metastatic gastric cancer and in one patient with metastatic colon cancer. The reasons why we failed to detect elevated soluble CD44 in these two patients are not known. Since CD44 is not expressed in all human tumor cells, tumor cells from these two patients may not express CD44. The expression of CD44 is known to be controlled by the inhibitor Lutheran In(Lu) gene (36). Individuals with the dominant form of Lu(a-b) phenotype express reduced levels of CD44 on their RBC, monocytes, and in their serum (36). The In(Lu) gene may also influence the expression of CD44 on tumor cells. These two patients may have the rare dominant Lu(a-b) phenotype, resulting in reduced levels of soluble CD44 in their serum. Immunohistochemical staining of biopsies from these patients with anti-CD44 monoclonal antibodies may confirm this hypothesis.

We were able to detect elevated serum CD44 levels in 4 of 10 patients with nonmetastatic colon cancer and in 5 of 8 patients with nonmetastatic gastric cancer. Of four patients with stage I colon carcinoma, we were able to detect an increase in serum CD44 levels only in one patient. In six patients with nonmetastatic stage II colon cancer, we were able to detect increases in serum CD44 levels in three of these patients. Tumor cells from these three patients were well differentiated adenocarcinoma, suggesting that serum CD44 levels may correlate with the differentiation stages of the tumor cells. However, a well differentiated tumor cell is thought to be less metastatic than a poorly differentiated tumor cell, and therefore the significance of this observation is not known. Experiments are now in progress to analyze serum samples from patients with stage II adenocarcinoma. In addition we are investigating whether serum from patients with other malignancies also have elevated soluble CD44.

The reasons that we were not able to identify patients with stage I or some of the stage II carcinomas with higher frequency may be related to the monoclonal antibodies we used for our soluble CD44 ELISA. The two anti-CD44 monoclonal antibodies react with the Mr 85,000 CD44 isoform and cannot distinguish different CD44 isoforms. The presence of soluble Mr 82,000 CD44 in normal serum may interfere with our ability to detect small increases in the levels of other tumor associated CD44 isoforms. Using monoclonal antibodies specific for different CD44 isoforms may significantly improve the sensitivity of our ELISA. This approach may eventually allow us to detect a small increase in various CD44 isoform concentrations in patients with early stages of malignant diseases. We may be able to use the ELISA to monitor the levels of soluble CD44 in cancer patients after surgical removal of tumors and/or after chemotherapy as an indicator of the efficacy of the treatments.

ACKNOWLEDGMENTS

We thank Dr. Edward Medof for providing sera from patients with rheumatic diseases. We thank Drs. Michael Bigby, Stan Gerson, and Garison Owens for discussion and suggestions and Ruth Hackett for help with the manuscript.

REFERENCES


Potential Use of Soluble CD44 in Serum as Indicator of Tumor Burden and Metastasis in Patients with Gastric or Colon Cancer

Ya-Jun Guo, Guangluo Liu, Xiaoning Wang, et al.


Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/54/2/422

Sign up to receive free email-alerts related to this article or journal.

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.