Effect of Tamoxifen on the Multidrug-resistant Phenotype in Human Breast Cancer Cells: Isobologram, Drug Accumulation, and Mr 170,000 Glycoprotein (gp170) Binding Studies

Fabio Leonessa, Mary Jacobson, Bryan Boyle, Jeremy Lippman, Michael McGarvey, and Robert Clarke

Vincent T. Lombardi Cancer Research Center [F. L., M. J., B. B., J. L., M. M., R. C.] and Department of Physiology and Biophysics [R. C.], Georgetown University Medical School, Washington, DC 20007

ABSTRACT

We have performed isobologram analyses of the ability of tamoxifen (TAM) to alter the response to Adriamycin (ADR) and vinblastine (VBL) in human breast cancer cells. MCF-7 cells express functional receptors for estrogen and progesterone but do not express detectable levels of Mr 170,000 glycoprotein (gp170). CL 10.3 and MCF-7ADR cells are MCF-7 variants which express gp170. CL 10.3 but not MCF-7ADR cells express functional steroid hormone receptors. Tamoxifen (1-2.5 μM) interacts synergistically with ADR and VBL in CL 10.3 and MCF-7ADR cells. TAM increases the cytotoxicity of VBL and ADR and the intracellular levels of [3H]VBL by approximately 2-3-fold. TAM also prevents the binding of [3H]azidopine to gp170. The ability of TAM to concurrently increase the cytotoxic effects of ADR and VBL, increase VBL accumulation, and inhibit the binding of azidopine to gp170 strongly implies that the synergistic effects of TAM are mediated through its effects on gp170. TAM produces an antagonistic to additive interaction with ADR and VBL in MCF-7 cells, and at high concentrations (5 μM) the synergy apparent in CL 10.3 and MCF-7ADR cells is lost. While TAM clearly has a significant potential for use as a chemosensitizing agent, the design of clinical trials may require careful consideration.

INTRODUCTION

The treatment of breast cancer is often confined to local modalities when there are no detectable metastases. However, a significant proportion of patients have already developed either clinical or occult metastatic disease by the time of diagnosis (1). These patients require systemic therapy. Many patients with metastatic breast cancer respond to a wide range of systemic treatments. Unfortunately, the majority of initially responsive tumors acquire a phenotype characterized by cross-resistance to multiple drugs, including agents that these patients have not previously received.

The development of a multiple drug-resistant phenotype in metastatic breast cancer is primarily responsible for the failure of current treatment regimens. The precise mechanisms responsible for conferring a multiple drug-resistant phenotype on breast cancer cells remain unclear. In some cells, this phenotype is accompanied by the expression of a membrane-bound glycoprotein (gp1703), the product of the human MDR1 gene. In these cases resistance is the result of an energy-dependent increase in drug efflux (2). Many of the more widely used drugs in breast cancer treatment, including the Vinca alkaloids (e.g., vinblastine) and the anthracycline antibiotics (e.g., Adriamycin), are substrates for gp170. Expression of MDR1 mRNA and/or gp170 has been widely reported in breast tumors (3-7). In some studies, detectable levels of expression in breast tumors correlate with failure of cytotoxic chemotherapy (3, 6), poor prognosis (7), and/or in vitro resistance to cytotoxic drugs (4, 6). Although gp170 is clearly expressed in a significant number of breast tumors, its precise functional and biological relevance remains to be determined.

Expression of MDR1 has been associated with a loss of steroid hormone receptor expression and cross-resistance to antiestrogens (8). To determine the ability of MDR1 expression to perturb hormone sensitivity, we previously introduced the human MDR1 complementary DNA into MCF-7 human breast cancer cells using retroviral vector-mediated gene transfer (9). Transduced cells (CL 10.3) express gp170 and are resistant to drugs of the MDR1-mediated phenotype but retain expression of steroid hormone receptors. These cells retain sensitivity to the inhibitory effects of triphenylethylene antiestrogens (9). Thus, the loss of ER and progesterone receptor expression and the cross-resistance to TAM observed in some MDR1-expressing cells appear to arise independently of an overexpression of MDR1 (9).

Some initial studies have suggested that hormonal agents may be substrates for gp170. Yang et al. (10) have shown that progesterone both can increase vinblastine accumulation in endometrial cells of mouse gravid uterus that express the mouse MDR1 genes and can prevent the binding of a photoactive substrate to the mouse MDR glycoprotein. The triphenylethylene antisterogen TAM and its close structural analogue toremifene also appear to influence multidrug resistance in MDR1-expressing cells (11, 12). However, these studies were performed on cells selected in vitro for resistance to ADR (P388 drug-resistant subline; MCF7ADR3). These cells may contain additional ADR resistance mechanisms unrelated to gp170. For example, we have recently demonstrated that MCF-7ADR but not CL 10.3 cells are cross-resistant to tumor necrosis factor.4 Because both ADR and tumor necrosis factor can inhibit cells by the generation of free radicals (13, 14), this cross-resistance in MCF7ADR cells strongly suggests the presence of ADR resistance mechanisms in addition to gp170, including altered expression of manganese superoxide dismutase. Steroids can alter resistance mediated through this pathway (14). Thus, effects on sensitivity to ADR mediated through resistance mechanisms that are independent of MDR1 expression cannot be readily excluded when using MCF7ADR cells.

Despite the apparent monoclonal origin of breast tumors, they develop considerable subpopulation heterogeneity (15, 16). By the time a breast tumor mass is detected there is already marked heterogeneity in a breast tumor mass (17). Many of these populations respond differently to the effects of hormones/antihormones. There may also be interactions between cytotoxic drugs and hormonal agents (18, 19). For example, estrogens can increase or decrease the sensitivity to cytotoxic drugs, depending on the ER status of the target cell (20, 21). Some endocrine agents alone can induce significant inhibitory effects on responsive cells when administered at the concentrations required

Received 4/19/93; accepted 11/12/93.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by USPHS Grants NC1 U01-CA51908 and P30-CA51008 from the National Cancer Institute (R. C.).

2 To whom requests for reprints should be addressed, at Room S128A, Vincent T. Lombardi Cancer Research Center, Georgetown University Medical School, 3800 Reservoir Road NW, Washington, DC 20007.

3 The abbreviations used are: gp170, Mr 170,000 glycoprotein; ER, estrogen receptor; TAM, tamoxifen; IMEM, improved minimal essential medium; ADR, Adriamycin; VBL, vinblastine; IC, inhibitory concentration.

to influence multidrug resistance. TAM arrests cells that express functional ER in G_0/G_1 of the cell cycle (22). This could significantly increase the kinetic resistance of cells expressing ER but not gp170 and reduce the overall cytotoxic effects of cell cycle-phase-specific drugs in cells that concurrently express both ER and gp170. Thus, understanding the interactions between gp170, endocrine-reversing agents, and tumor subpopulations with differing levels of receptor and gp170 expression is critical for the development of novel chemotherapeutic therapies. Previous studies have not addressed whether endocrine-cytotoxic drug interactions in ER-positive gp170-expressing cells agents are synergistic, additive, or antagonistic.

The development of drugs that can reverse the MDR1 phenotype would be of significant clinical importance for breast cancer and other cancers associated with a MDR1-related multiple drug resistance phenotype. In this report we describe the ability of TAM to influence the MDR1 phenotype of human breast cancer cells. We demonstrate that the potential antagonistic effects of TAM on the response of ER-positive/gp170-negative MCF-7 cells to ADR and VBL are limited, relative to the synergistic effects on cells expressing gp170. We also demonstrate the ability of TAM to increase the intracellular accumulation of [^3H]VBL in MCF-7 cells expressing gp170, but not in parental MCF-7 cells, and to prevent [^3H]Azidopine binding to gp170. Thus, triphenylethylenes interact synergistically with classical gp170 substrates at least partly by increasing intracellular drug accumulation through an apparent competition for binding to gp170.

MATERIALS AND METHODS

Cell Culture. MCF-7 cells were provided by Dr. M. Rich, Michigan Cancer Foundation (Detroit, MI). MCF-7ADR cells were provided by Dr. K. Cowan, National Cancer Institute (Bethesda, MD). The CL 10.3 cells are MCF-7 cells that have been transfected with the MDR1 complementary DNA, and they have been described previously (9). The phenotypes of the cell lines are provided in Table 1. All cell lines were maintained in IMEM (Biofluids, Rockville, MD) containing phenol red and supplemented with 5% fetal calf serum. TAM (1–5 μM) and either ADR (5 nM to 3 μM) or VBL (0.5–100 nM). Control wells were treated with each drug alone and/or appropriate concentrations of the cytotoxic drug (ADR or VBL) and antiestrogen (TAM) required to produce a fixed level of inhibition (IC₅₀) when administered alone, and represent the concentrations required for the same effect when the two drugs are administered in combination, and Iₑ represents an index of drug interaction (interaction index). Iₑ values of <1 indicate synergy, a value of 1 represents additivity, and values of >1 indicate antagonism. For all estimations of Iₑ, we used only isoboles where intercept data for both axes were available.

Effect of TAM on [^3H]VBL Accumulation. Cells (10⁶) were seeded into 24-well dishes (Costar). Twenty-four h later, cells were incubated with 10 nM [^3H]VBL (specific activity, 8.3 Ci/mmol; Amersham) for increasing periods from 60 sec to 3 h at 37°C, in the presence or absence of 1 μM TAM. Following incubation, uptake was stopped by rinsing the wells three times with 250 μl of buffer (IMEM with 0.1% bovine serum albumin and 50 mM 2-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 7.4). Cells were removed by trypsinization and total cell-associated radioactivity was determined by liquid scintillation counting. Data points are presented as the mean ± SD of three or more determinations. Because the data exhibit saturable kinetics equivalent to Michaelis-Menten kinetics, curves were obtained by fitting the equation y = Bmax(T/T + Kᵣ) to the experimental data points, where B_max is maximum intracellular ligand, T is time, and Kᵣ is the time required to achieve 50% of total intracellular drug accumulation.

Effect of TAM on [^3H]Azidopine Binding to gp170. To the potentially confounding binding of TAM to additional sites (e.g., ER or estrogen binding sites) in the CL 10.3 cells, we used MCF-7ADR cells for the gp170 competitive binding analyses. Cells were grown to 90% confluence and incubated with 0.2 μM [^3H]Azidopine [2,6-dimethyl-4-(2'-trifluoromethylphenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid, ethyl, (N-4"-azido[3",5"-3H]-benzoylaminohexyl) diester; specific activity, 50 Ci/mmol; Amersham, Arlington Heights, IL] for 1 h, in the presence or absence of TAM citrate (1–100 μM) or the gp170 substrate VBL sulfate (11.0 μM). The treatment was followed by washing with phosphate-buffered saline and exposure of cells to UV light at a 15-cm distance for 20 min on ice. Cellular proteins were extracted in buffer containing 1% Nonidet P-40, 150 mM NaCl, and 50 mM Tris. Following centrifugation for 5 min at 4°C in a benchtop microfuge (Brinkman Instruments Inc., Westbury, NY), the pellets were discarded, and the protein concentration in the supernatants was determined using a Bio-Rad protein assay (Bio-Rad Laboratories, Richmond, CA). Proteins were separated by molecular weight following electrophoresis in sodium dodecyl sulfate-Tris-glycine-polyacrylamide (4–20%) gradient gels. Electrophoresis was performed in a Novex X-cell Mini-Cell apparatus (Novex, San Diego, CA). The gels were treated with 20% (w/v) 2,3-diphenylloxazole in dimethylsulfoxide (27) and dried, and autoradiography was performed at –70°C.

<table>
<thead>
<tr>
<th>Table 1 Phenotypes of the MCF-7, CL 10.3, and MCF7ADR cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER and progestrone receptor (PGR) levels as provided as the mean values of receptor binding sites/cell (9).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Sites/cell</th>
<th>ER</th>
<th>PGR</th>
<th>gp170</th>
<th>Tumorogenicity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF-7</td>
<td>58,900</td>
<td>68,250</td>
<td>–</td>
<td>+E2</td>
<td>9, 5.4</td>
<td></td>
</tr>
<tr>
<td>CL 10.3</td>
<td>78,547</td>
<td>89,995</td>
<td>+</td>
<td>+E2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>MCF7ADR</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>+E2</td>
<td>8, 9</td>
<td></td>
</tr>
</tbody>
</table>

^a^ E2, estradiol.
^b^ ND, not detected.
RESULTS

Differential Sensitivities of the Cell Lines to TAM, ADR, and VBL. Representative dose-response relationships for each drug alone and in combination are provided in Figs. 1 (left), 2 (left), and 3 (left). The dose-response relationships for the combination treatments are represented by a three-dimensional surface that connects the dose-response curves for each drug alone. The response of the respective cell line to each drug alone is represented by the interface between the edge of this surface and each of the vertical planes.

The ER-positive MCF-7 [Fig. 1 (left)] and CL 10.3 [Fig. 2 (left)] cells are clearly inhibited by TAM at all concentrations used in this study. This confirms our previous data showing that the expression of gp170 does not alter the response to TAM in ER-expressing cells (9). Concentrations of TAM of <5 μM do not consistently inhibit the ER-negative MCF-7ADR cells. However, at >5 μM TAM we observe a ≥25% inhibition of these cells (data not shown).

The relative differences in responsiveness to VBL and ADR among the cell lines are more readily appreciated at the lower levels of cell inhibition. We can define fold resistance at IC₅₀ as the ratio of the IC₅₀ values in the resistant and parental cells. Thus, the IC₅₀ values for CL 10.3 and MCF-7ADR cells indicate that these cells are 13-fold and 90-fold resistant, respectively, to ADR, relative to MCF-7 cells. This is in broad agreement with our previous data (9). For VBL, CL 10.3 and MCF-7ADR cells are 20-fold and 45-fold resistant, respectively, relative to MCF-7 cells. Clearly, sensitivity of the various cell lines is strongly associated with gp170 expression.

Effect of TAM on the Response of Cell Lines to ADR and VBL. The effects of TAM (1.0, 2.5, and 5.0 μM) on the response of the different cell lines (MCF-7, MCF-7ADR, and CL 10.3) to ADR and VBL are represented in Figs. 1 (left), 2 (left), and 3 (left), respectively. The magnitudes of the TAM/drug responses are readily apparent. TAM alone is inhibitory at many of the concentrations examined. This indicates the presence of a potentially significant additive/antagonist component. Thus, possible synergistic interactions between TAM and ADR/VBL cannot be accurately discriminated from additive or antagonistic effects on the basis of these representations alone.

To evaluate the interactions of TAM with ADR and VBL, we performed a series of isobologram transformations of multiple dose-response analyses. Representative transformations are presented graphically (isobolograms) in Figs. 1 (right), 2 (right), and 3 (right). The concavity of the isobolograms clearly indicates that TAM interacts synergistically with both ADR and VBL in the gp170-expressing MCF-7ADR and CL 10.3 cells. While Figs. 1–3 provide a graphical representation of representative experiments, Table 2 reports the means and 95% confidence intervals of the IC₅₀ values estimated at the IC₆₅ value [IC₆₅]. The choice of IC₆₅ was determined by the individual characteristics of the dose-response curves obtained in multiple analyses. A significant sensitization to VBL and ADR is observed specifically in the CL 10.3 and MCF-7ADR cells and is already detected in the presence of 1 μM TAM. Increasing the concentration of TAM to 5 μM results in the loss of a significant synergistic interaction. This is evident for both ADR and VBL in CL 10.3 and MCF-7ADR cells (Table 2). In the parental MCF-7 cells, TAM/VBL and TAM/ADR interactions are approximately additive, although antagonism is evident in some isobols (e.g., Fig. 1 (right, bottom)).

TAM Effects on [³H]VBL Accumulation and [³H]Azidopine Binding to gp170. To avoid potential problems associated with additional ADR-resistance mechanisms in MCF-7ADR cells, we used VBL as the gp170 substrate for the competitive binding and drug accumulation studies. For the drug accumulation studies we used 1 μM TAM. This concentration is significantly higher than the Kᵣ of TAM for ER or antiestrogen binding sites (28) and ensures that there are significant levels of free TAM present in the ER-positive cells. Fur-
TAMOXIFEN AND THE MULTIDRUG-RESISTANT PHENOTYPE

Fig. 2. Representative dose-response relationships (left) and isobologram transformations (right) for TAM/VBL (upper) and TAM/ADR (lower) in CL 10.3 cells. The data at left represent the mean of 6 or more determinations. The coefficient of variation among these mean values is approximately 15%. O.D., absorbance. The data at right represent the isobols estimated at the IC_{25}–IC_{50} levels.

Fig. 3. Representative dose-response relationships (left) and isobologram transformations (right) for TAM/VBL (upper) and TAM/ADR (lower) in MCF-7_{ADR} cells. The data at left represent the mean of 6 or more determinations. The coefficient of variation among these mean values is approximately 15%. O.D., absorbance. The data at right represent the isobols estimated at the IC_{25}–IC_{50} levels.
Table 2: Effect of TAM on VBL and ADR cytotoxicity

Data represent the geometric mean and 95% confidence interval of 3 or more experiments, except where indicated. \(I_x(65) \) is the interaction index at the 65% cell growth inhibition level, as described in "Materials and Methods."

<table>
<thead>
<tr>
<th>Cell line</th>
<th>[TAM] (μM)</th>
<th>VBL</th>
<th>ADR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF-7</td>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.77 (0.55–1.06)</td>
<td>0.97 (0.53–1.77)</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.94 (0.73–1.20)</td>
<td>1.05 (0.67–1.63)</td>
</tr>
<tr>
<td></td>
<td>5.0*</td>
<td>1.11 (1.00–1.23)</td>
<td>1.23 (1.02–1.49)</td>
</tr>
<tr>
<td>CL 10.3</td>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.31 (0.26–0.37)</td>
<td>0.37 (0.28–0.50)</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.55 (0.43–0.71)</td>
<td>0.56 (0.44–0.71)</td>
</tr>
<tr>
<td></td>
<td>5.0*</td>
<td>0.89 (0.59–2.00)</td>
<td>0.86 (0.50–1.50)</td>
</tr>
<tr>
<td>MCF-7ADR</td>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.52 (0.23–1.19)</td>
<td>0.53 (0.34–0.81)</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>0.51 (0.46–0.58)</td>
<td>0.53 (0.34–0.81)</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>0.85 (0.65–1.11)</td>
<td>0.77 (0.46–1.27)</td>
</tr>
</tbody>
</table>

* Data from 2 experiments.

In addition, this concentration of TAM produces clear synergistic effects on the cytotoxicity of VBL in both MCF-7ADR and CL 10.3 cells (Table 2). The data in Fig. 4 demonstrate the differential intracellular accumulation of \(^{3}H\)VBL in each of the cell lines. TAM significantly increases the accumulation in MCF-7ADR and CL 10.3 cells, by approximately 3-fold. TAM has no effect in the parental MCF-7 cells.

The data in Fig. 5 demonstrate the ability of TAM to inhibit binding of the photoactive substrate \(^{3}H\)azidopine to gp170. TAM (10–100 μM) inhibits azidopine binding in a dose-dependent manner. The lack of a significant effect on azidopine binding with 1 μM TAM probably reflects the relative affinities of TAM and azidopine for gp170.

DISCUSSION

Ford and Hait (29) have observed that many investigators estimate the magnitude of the effect of gp170-chemosensitizing agents by directly comparing the IC_{50} values for a cytotoxic drug in the presence and absence of a fixed concentration of a relatively nontoxic agent. This is often performed by estimating the IC_{50} ratios in the presence and absence of chemosensitizer. However, the validity of this approach decreases as the concentration of chemosensitizer approaches toxic doses, and it is inadequate in cases where the chemosensitizer exhibits inhibitory activity.

There are various potential methods that have been previously used to investigate drug-drug interactions (25, 30–32). Berenbaum (30, 33) has clearly described how the classical isobologram equation applies to drug combinations irrespective of either the shape of the constituent dose-response curves or the mechanism of action. In these analyses the interactions between the two drugs are represented graphically as isoeffect curves (isobolograms). TAM can inhibit all three cell lines (MCF-7, CL 10.3, and MCF-7ADR), and there are multiple potential mechanisms for TAM-induced toxicity, including ER interactions (34) and perturbations of either membrane fluidity (35) or calmodulin activity (36). Consequently, we applied classical isobologram analyses using the criteria described in detail by Berenbaum (26, 30).

In Figs. 1–3 and Table 2 we demonstrate that TAM (1 μM) interacts synergistically with VBL and ADR, decreasing the \(I_x \) by approximately 2–3-fold in both CL 10.3 and MCF-7ADR cells. However, increasing the concentration of TAM from 2.5 μM to 5 μM increases the \(I_x \) for TAM/ADR and TAM/VBL to nonsignificant levels in both CL 10.3 and MCF-7ADR cells.

The failure to consider adequately the toxicity of 5 μM TAM alone could lead to inappropriate mechanistic speculations regarding TAM/drug interactions. Using IC_{50} ratios (29), increasing the concentration of TAM from 2.5 μM to 5 μM would produce a misleading increase in the apparent degree of "sensitization" to ADR from 5.4 to 12.5-fold in MCF-7ADR cells. However, the isobologram analyses clearly demonstrate that this interaction is no longer synergistic.

Breast tumors are markedly heterogeneous with respect to the expression of both ER (37) and gp170 (38, 39). Consequently, we wished to determine the nature of TAM/drug interactions in ER-positive and -negative cells that concurrently express gp170. This is particularly important because TAM alone can arrest ER-positive cells in G_0/G_1 at the concentrations used in chemohormonal combinations (1–5 μM) (22, 35). A G_0/G_1 blockade could significantly increase the kinetic resistance to ADR and VBL in TAM-responsive cells (MCF-7 and CL 10.3). Furthermore, there have been some reports of interactions between TAM and cytotoxic drugs that are not substrates for gp170 (for recent reviews, see Refs. 40 and 41). For example, TAM reduces both the intracellular accumulation and cytotoxicity of Melphalan (42).
We detect antagonism in some isoeffect curves; for example, 5.0 μM TAM antagonizes the effects of ADR in MCF-7 cells [Fig. 1 (right, bottom)], producing a I_S of 1.23 (Table 2). However, the degree of antagonism at lower concentrations, where TAM alone is also inhibitory, is not significant (Table 2). We do not detect antagonism in the ER-positive CL 10.3 cells [Fig. 2 (right, bottom); Table 2]. Despite potentially adverse perturbations in cell cycle distribution, TAM also failed to decrease the cytotoxicity of the non-gp170 substrates methotrexate and 5-fluorouracil in MCF-7 cells (43). These observations indicate that TAM/drug combinations are unlikely to produce significant adverse interactions in some ER-positive/gp170-negative subpopulations.

The data in Figs. 2 (right) and 3 (right) and Table 2 indicate that TAM at certain concentrations can interact synergistically with ADR and VBL in MCF-7ADR and CL 10.3 cells. This has important mechanistic implications. TAM can inhibit calmodulin activity (36), and trifluoperazine inhibitors of calmodulin function can increase sensitivity to ADR by mechanisms other than alterations in drug accumulation retention (44). However, gp170 confers resistance by maintaining a low intracellular concentration of substrate. We first determined the ability of TAM to influence the accumulation of [3H]azidopine alone (control lane). Fig. 5. Ability of TAM to prevent the binding of [3H]azidopine to gp170. Bands represent the signal obtained from the [3H]azidopine bound to gp170. ctr, [3H]azidopine alone (control lane).

In cells expressing gp170, the ability of TAM to concurrently increase the cytotoxic effects of ADR and VBL, increase VBL accumulation, and inhibit the binding of azidopine to gp170 strongly implies that the major effect of TAM is mediated through its effects on gp170. However, we cannot exclude the possibility that other mechanisms also influence ADR cytotoxicity, particularly in MCF-7ADR cells.

TAM is an attractive candidate for inclusion in chemohormonal regimens due to the low incidence of serious dose-limiting toxicities (34). However, for TAM to have potential as a clinical agent for reversing gp170 resistance, the doses that reverse resistance must be within the ranges achievable in human patients. TAM is generally administered p.o. in the range of 10–20 mg daily. There is a long mean terminal half-life of 5–11 days (49, 50). TAM steady state serum concentrations of ≥1 μM have been reported using high-dose regimens of 40 mg/m2 TAM twice daily (49, 51). More recently, Trump et al. (52) reported that 150 mg/m2 TAM can produce mean plasma levels of 4 μM TAM without dose-limiting toxicity. While TAM concentrations in the range of 1–5 μM are within the clinically achievable range, the clinical relevance of experimental data generated using TAM concentrations of ≥10 μM remains unclear. TAM and its metabolites are extensively bound to serum proteins (50), and the amount of free drug that may be available to cells is not known.

We demonstrate that 1 μM TAM produces significant synergy with both VBL and ADR and increases the intracellular accumulation of [3H]VBL. Increasing the concentration of TAM from 2.5 μM to 5 μM results in a loss of synergy for ADR and VBL in both CL 10.3 and MCF-7ADR cells. At these concentrations, the apparently nonspecific toxicity of TAM becomes significant. The nonspecific toxicity component of the overall response may antagonize the effects of ADR and VBL, independently of any interactions with gp170. At concentrations of ≥5 μM this antagonism may begin to predominate over the synergistic component of the biological response. It is unlikely that these nonspecific effects are mediated through ER-associated mechanisms such as altered transforming growth factor β secretion (53), because these effects are observed in ER-negative cells (35).

While the clinical relevance of these analyses is unclear, the observed loss of synergy at very high concentrations of TAM is clearly worthy of consideration. The conditions that generate nonspecific toxic effects of TAM in vitro may be biologically/pharmacologically comparable to those that induce dose-limiting toxicities in patients receiving high doses of TAM (52). Thus, the use of very high-dose TAM regimens may prove to be suboptimal, while increasing the
potential for generating severe TAM-induced toxicity. It will require further study to determine the degree to which this may apply to other systems. We are currently attempting to address these issues by performing a series of analyses in tumors growing in athymic nude mice.

REFERENCES

25. Lasky, R. A., and Mills, A. D. Quantitative film detection of 3H and 14C in poly-
26. Tamoxifen and the multidrug-resistant phenotype...
Effect of Tamoxifen on the Multidrug-resistant Phenotype in Human Breast Cancer Cells: Isobologram, Drug Accumulation, and Mr 170,000 Glycoprotein (gp170) Binding Studies

Fabio Leonessa, Mary Jacobson, Bryan Boyle, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/54/2/441

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.