Collateral Sensitivity of Human Melanoma Multidrug-resistant Variants to the Polyamine Analogue, N¹,N¹¹-Diethylnorspermine¹

Carl W. Porter,² Barbara Gani, Youcef Rustum, Carol Wrzosek, Debra L. Kramer, and Raymond J. Bergeron

ABSTRACT

Certain N-alkylated analogues of the natural polyamine spermine, such as N¹,N¹¹-diethylnorspermine (DENSPM), rapidly deplete intracellular polyamine pools by down-regulating the biosynthetic enzymes, ornithine decarboxylase and S-adenosylmethionine decarboxylase, and by potently up-regulating the polyamine catabolizing enzyme, spermidine/spermine N²-acetyltransferase. On the basis of previously reported antitumor activity in human tumor xenograft model systems, DENSPM is currently undergoing Phase I clinical trials against human melanoma and other solid tumors. The antiproliferative activity of this analogue against the multidrug resistance (MDR) phenotype was examined in three MDR sublines of human melanoma RPMI-7932 cells, which were shown to be 2- to 10-fold resistant to classical MDR agents. These MDR lines had been separately derived using different selecting agents (Lemontt et al., Cancer Res., 48: 6344–6353, 1988). Subline functional resistance due to P-glycoprotein was confirmed by decreased retention of rhodamine 123 relative to parent cells as detected by flow cytometry. Although the three sublines were 2- to 10-fold less sensitive than the parent line to classical MDR-type agents, they were found in dose-response studies to be significantly more sensitive to DENSPM than the parent line. In addition, they showed a distinct cytotoxic response after a 48-h treatment with 10 μM DENSPM, which was not apparent in the parent line. Growth sensitivity of the sublines to the ornithine decarboxylase inhibitor, α-difluoromethylornithine, or the S-adenosylmethionine decarboxylase inhibitor, CGP-48864, was found to be similar to parent cells. The ratio of the key biosynthetic enzyme activities for ornithine decarboxylase and S-adenosylmethionine decarboxylase was found to be 3.5- to 5-fold higher in all three sublines, due mainly to increases in the former enzyme. This imbalance produced unusually high putrescine pools. Although DENSPM down-regulation of decarboxylase activities and potent up-regulation of spermidine/spermine N²-acetyltransferase activity occurred similarly in both parent and variant lines, polyamine depletion was greater in the variant lines. Collateral sensitivity of the MDR sublines to DENSPM is partially attributable to the finding that analogues (and spermine) uptake in the sublines was about 2-fold higher (after 2 h) than in the parent cells. The presence of disturbances in polyamine homeostasis and decreased sensitivity to DENSPM in three independently selected cell line variants suggests that they may be generally associated with the MDR phenotype in human melanoma and possibly other tumor cells. The collateral sensitivity of human melanoma MDR variants to DENSPM represents a possible therapeutic indication which should be considered during the ongoing clinical evaluation of this drug.

INTRODUCTION

Sustained increases in polyamine biosynthesis are a well-recognized component of preneoplastic and neoplastic tissues and, therefore, constitute an attractive target for anticancer therapeutic intervention (1, 2). Drug discovery efforts by various academic and industrial programs have lead to the recent or imminent entry of at least five polyamine inhibitors and analogues into clinical trials: three polyamine analogues having potent antitumor activity based on apparently different modes of action (3–6), a new inhibitor of a polyamine biosynthetic enzyme (7, 8), and a reevaluation of the ornithine decarboxylase inhibitor (9), DFMO,³ as a chemopreventive agent (10, 11).

Our own interests have focused on the polyamine analogue DENSPM (12, 13) and CGP-48864 an inhibitor of S-adenosylmethionine decarboxylase (7, 8). DENSPM depletes polyamine pools and inhibits tumor cell growth by down-regulating polyamine biosynthesis and inducing polyamine excretion and catabolism (12, 14). On the basis of antitumor activity against human tumor xenografts (3, 4, 15), DENSPM is currently undergoing clinical trial at three institutions. In contrast to these analogues, CGP-48864 depletes intracellular polyamine pools by inhibiting the biosynthetic enzyme, SAMDC (8). Its selectivity for the enzyme is strongly indicated by the finding that Chinese hamster ovary cells, made >600-fold resistant to the drug, overexpressed SAMDC at the level of gene amplification (8). The inhibitor is currently undergoing preclinical development for trials against solid tumors. In human tumor model systems, both DENSPM and CGP-48864 seem to be most effective against solid tumors, especially melanoma (3, 4, 8).

Inherent and acquired resistance of tumors to classical chemotherapeutic agents presents a major problem in cancer chemotherapy (16, 17). Of the many mechanisms known to be potentially responsible, MDR mediated by P-glycoprotein expression is one of the best understood mechanisms and is the most widely implicated due to its ability to confer cross-resistance to a number of clinically effective drugs (18). P-glycoprotein is encoded by the mdr-1 gene and acts as a pump to transport cytotoxic drugs out of the cell. On the basis of structure and uptake characteristics (8, 19), neither DENSPM nor CGP-48864 would be expected to be affected by P-glycoprotein function. In an attempt to determine whether they may have therapeutic usefulness in treating MDR tumors, we examined the growth sensitivity of MDR human melanoma cell line variants to these agents.

Three independently isolated MDR clones of the drug-sensitive RPMI-7932 human melanoma were obtained from Lemontt et al. (20) and studied. The lines had been derived by single-step selection in culture medium containing 4.5 mg/ml vincristine (VCR-4.5/4), 3 mg/ml vinblastine (VBL-4), or 8 mg/ml colchicine (BMCOL-1). Relative to the parent line, the MDR sublines were found to be unaffected in their sensitivity to CGP-48864 and collaterally sensitive to the analogue DENSPM, due apparently to distinct shifts in polyamine homeostasis. Thus, while either drug may prove useful in therapeutic strategies targeting MDR, it would appear that the chemotherapeutic effectiveness of DENSPM may actually be improved in tumors displaying the MDR phenotype.

³ The abbreviations used are: DFMO, α-difluoromethylornithine; DENSPM, N¹,N¹¹-diethylnorspermine; CGP-48864, 4-aminoimidod-1-one 2'-amidinohydroazone; SAMDC, S-adenosylmethionine decarboxylase; MDR, multidrug resistance; VCR, vincristine; VBL, vinblastine; DMDP, N-(3,4-dimethoxyphosphoryl)-N'-methyl-2-(naphthyl) -m-di- thiame-2-propylamine; ODC, ornithine decarboxylase; SSAT, spermidine/spermine N²-acetyltransferase.
MATERIALS AND METHODS

Materials. The RPMI-7932 human melanoma cell lines and the three resistant lines were previously derived and characterized by Lemontt et al. (20) and generously provided by Genzyme Corp. (Framingham, MA). The specific inhibitor of ornithine decarboxylase (9), DFMO, was kindly provided by Marion Merrill Dow (Cincinnati, OH); the specific inhibitor of S-adenosylmethionine decarboxylase (8), CGP-48664, by Ciba Geigy (Basel, Switzerland); and the inhibitor of P-glycoprotein function (21, 22), DMDP, by Hoffman-Roche (Basel, Switzerland). The spermine analogue DENSPM was synthesized as described earlier (23, 24). [3H]Spermidine used in uptake studies was purchased from DuPont NEN (Boston, MA). Rhodamine 123 was obtained from Molecular Probe (Eugene, OR).

Cell Culture. RPMI-7932 cells and the MDR sublines, VCR-4.5/4, VBL-4, and BMCOL-1 were grown in a-minimal essential medium containing 10% fetal calf serum at 37°C in the presence of 5% CO2. Cultures were maintained under exponential growth conditions during the course of all experiments. Before being used for experimental purposes, the resistance of each cell line to the different selecting agents was confirmed to be as reported in their initial characterization (20).

Enzyme Assays. ODC and SAMDC activities were assayed according to the methods of Seely and Pegg (25) and Pegg and Poso (26), as described previously (12, 13). For the SSAT enzyme assay, the cell extract was thawed and centrifuged for 1 h at 35,000 rpm using a Spinco 40 rotor. SSAT activity was determined on the resultant supernatant according to the method of Libby et al. (27). In the case of DENSPM-treated cell samples, the enzyme extract was diluted so that SSAT activity fell within the linear range of the assay. It should be noted that this assay also measures enzyme activities other than SSAT that are capable of acetylating spermidine. However, in the case of DENSPM-treated MALME-3M human melanoma cells, we have found that the preponderance (>97%) of the total acetylating activity is SSAT (13).

Polyamine Pools. Cell samples were extracted with 0.6 M perchloric acid and centrifuged, and the supernatant extract was assayed for polyamines and DENSPM by high pressure liquid chromatography using a precolumn dansylation system (28) as described previously by this laboratory (13, 14). Polyamine levels were expressed on the basis of nmol per 10e6 cells.

Flow Cytometry. To compare P-glycoprotein expression at the cell surface of MDR and parent cells, cells were incubated with MRK-16 antibody (Ref. 30; obtained from Dr. Tsuruo, Tokyo, Japan) and subsequently labeled with R-phycocerythrin-conjugated goat anti-mouse antibody. The assay for P-glycoprotein function (31—34) makes use of the fact that the dye rhodamine 123 behaves like MDR drugs such as doxorubicin and is effluxed out of the cell via the P-glycoprotein system. Thus, dye retention is an indication of P-glycoprotein function. Parent and subline melanoma cells were incubated for 20 min in 5 μg/ml rhodamine 123, washed, and incubated for 60 min in media to allow efflux of the dye; after which, cellular fluorescence was analyzed by flow cytometry. In variations of this scheme, cells were sometimes pretreated with 10 μM DENSPM or 10 μM CGP-48664 for 24 h to deplete polyamine pools, or they were treated with 2 μM DMDP during the dye uptake incubation, wash,
and efflux period to inhibit P-glycoprotein function and prevent dye efflux (21, 22). Rhodamine 123-containing cells were then analyzed on a FACScan (Becton Dickinson, San Jose, CA; dye emission was collected through a 530/30 band pass filter).

RESULTS

P-Glycoprotein Expression and Function. P-Glycoprotein expression of the various sublines was confirmed by whole cell labeling with MRK-16 antibody (30, 34) and quantitated by flow cytometry (Fig. 1). By peak fluorescence values, the sublines stained about 4- to 10-fold more intensely than the parent line (10.5 versus 45 to 110). The functional resistance of the sublines was then confirmed by a rhodamine 123 retention assay in which dye content was quantitated by flow cytometry (Fig. 1). During the 1-h postlabeling period, the sublines effluxed at least 10 times more rhodamine 123 than the parent line (both contained similar amounts of the dye following the 20 min labeling period). To demonstrate that this loss was mediated by P-glycoprotein, cells were treated with the calcium channel blocker DMDP during the dye uptake incubation, wash, and efflux period. While the parent lines were unaffected by this treatment, rhodamine

Fig. 2. Effects of 10 μM DENSPM on the growth of RPMI-7932 and the three MDR variants VCR 4.5, VBL 4.5/4, and BMCOL-1 over a 72-h time course. Cells were plated at −24 h and treated with analogue at 0 h. Note that, under control conditions, the growth rate of the parent cells was similar to that of the sublines, with the exception of BMCOL-1, which lagged 2 days instead of 1 after seeding before growth resumed. While the parent cells were only marginally growth inhibited by DENSPM, the three sublines were affected by cytotoxicity after 48 h. Points, the mean of three experiments; bars, SD.
Table 1: Comparison of polyamine metabolism and DENSPM effects in RPMI-7932 parent and MDR human melanoma cell line and treatment (48 h) % control growth

<table>
<thead>
<tr>
<th>Cell line and treatment (48 h)</th>
<th>% control growth</th>
<th>Enzyme activities</th>
<th>Polyamine pools</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ODC (nmol CO₂/h/mg)</td>
<td>SAMDC (pmol/min/mg)</td>
</tr>
<tr>
<td>RPMI 7932</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100</td>
<td>4.85</td>
<td>2.58</td>
</tr>
<tr>
<td>10 µM DENSPM</td>
<td>78</td>
<td>0.31</td>
<td>0.06</td>
</tr>
<tr>
<td>VCR 4.5/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100</td>
<td>10.81</td>
<td>1.11</td>
</tr>
<tr>
<td>10 µM DENSPM</td>
<td>43</td>
<td>0.35</td>
<td><0.05</td>
</tr>
<tr>
<td>VBL-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100</td>
<td>13.69</td>
<td>1.54</td>
</tr>
<tr>
<td>10 µM DENSPM</td>
<td>31</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>BMCOL-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>100</td>
<td>5.74</td>
<td>0.82</td>
</tr>
<tr>
<td>10 µM DENSPM</td>
<td>30</td>
<td><0.05</td>
<td><0.05</td>
</tr>
</tbody>
</table>

*Data are means from two experiments performed in duplicate; PUT, putrescine; SPD, spermidine; SPM, spermine.

Parent line; MDR lines derived by Lemont et al. (20).

Fig. 3. Relative growth sensitivity of the RPMI-7932 human melanoma parent cell line and three MDR sublines to increasing concentrations of DENSPM. Note that the dose-response curves for the sublines are steep and reach 0% of control, while that for the parent line is flat and fails to go below 35% of control growth, even at 1 µM analogue. At 10 µM DENSPM (arrow), growth of the sublines is completely inhibited while that of the parent line is not.

Bars, SD.

Sensitivity of melanoma MDR variants to polyamines analogues

Retention by the sublines increased to levels similar to that retained by the parent line. Of the three sublines, VBL-4 showed the greatest heterogeneity in P-glycoprotein expression, as indicated by the width of the peak of antibody labeled cells (Fig. 1, right column). By contrast, the VBL-4 line showed the least heterogeneity in P-glycoprotein function, as indicated by the narrowness of the peak in rhodamine 123-labeled cells.

Growth Sensitivity to DENSPM. Importantly for comparison studies, all three sublines retained the approximate same growth rate under control conditions as the parent line (Fig. 2). Their growth sensitivity to DENSPM, however, was considerably greater than RPMI-7932 cells. When treated with the 10 µM analogue, the growth of the parent line was only marginally affected, while that of the sublines was cytotoxic at 24 h, as indicated by a sharp and significant decline in cell number (Fig. 2). The differential in growth sensitivity is also apparent in dose-dependence studies (Fig. 3). The parent line exhibited a flat curve, which decreased slowly from 0.01 µM analogue and then remained constant at about 40% control growth. This is a very typical response curve for DENSPM among most other cell lines examined. In contrast to the parent line, the sublines exhibited very steep dose-response curves, all of which decreased sharply in the range of 0.001 to 1.0 µM DENSPM and extended down to 0% control growth. By 10 µM, the sublines were completely growth inhibited, while the parent line was growing at 40% of control (Fig. 3).

Polyamine Perturbations. Various aspects of polyamine metabolism were compared in the RPMI-7932 cells and their sublines. Of significance was the finding that the ratio between the two key biosynthetic enzyme activities, ODC and SAMDC, were very different (Table 1). In the parent line, the ODC:SAMDC ratio was 1.9, while in the sublines, it ranged from 7.1 to 9.8, due mainly to increases in the activity of ODC. Consistent with these enzyme profiles, putrescine pools in the sublines were markedly elevated and ranged from 2655 to 5580 pmol/10⁶ cells, while those of the parent line were more typical of other cell types (480 pmol/10⁶ cells). Spermidine and spermine pools were similar for parent and sublines. The possibility that the high putrescine pools might be due to cadaverine produced by an undetected Mycoplasma infection (35) was discounted by spiking the samples with cadaverine and observing that two separate peaks appeared on the
Table 2 DENSPM accumulation and spermidine uptake in RPMI-7932 and MDR variants

<table>
<thead>
<tr>
<th>Cells (2 h)</th>
<th>DENSPM (pmol/10^6 cells)</th>
<th>[3H]SPD (pmol/µg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPMI-7932</td>
<td>597 ± 65</td>
<td>9.1 ± 1.0</td>
</tr>
<tr>
<td>VCR 4.5/4</td>
<td>1257 ± 84</td>
<td>23.8 ± 2.0</td>
</tr>
<tr>
<td>VBL-4</td>
<td>1307 ± 121</td>
<td>29.7 ± 7.8</td>
</tr>
<tr>
<td>BMf@OL-1</td>
<td>1171 ± 101</td>
<td>16.3 ± 2.0</td>
</tr>
</tbody>
</table>

DISCUSSION

Preclinical in vivo antitumor studies have shown that the polyamine analogue DENSPM and the polyamine inhibitor CGP-48664 are particularly effective against melanoma and other solid tumors (3, 4). On the basis of these findings, melanoma is among the main solid tumors being targeted in the current Phase I clinical trials of DENSPM. Our interest in initiating the present study was to demonstrate that MDR human melanoma cells retain sensitivity to the polyamine antagonists, such as the inhibitor CGP-48664 and the analogue DENSPM. Indeed, MDR sublines were found to be similarly sensitive to DFMO and CGP-48664 as the parent line, indicating that polyamine inhibitors may be useful in treating MDR tumors. Since growth inhibition by DENSPM was shown to be dependent on a transporter (Fig. 4) that is specific for polyamines (36–38) and since there is no indication that polyamines or their analogues are exported by the P-glycoprotein (39), it was our expectation that the human MDR sublines would mimic the parent line in their sensitivity to DENSPM. They were found, however, to be collaterally sensitive to the analogue. In particular, the sublines were cytotoxically affected, while the parent line was cytostatically inhibited. In addition, the cells were found to contain distinct perturbations in polyamine metabolism and transport, which may be at least partially responsible for the shift in growth sensitivity.

Growth Sensitivity to Polyamine Enzyme Inhibitors. Since polyamine metabolism was similarly and distinctly altered in the MDR sublines, their relative sensitivity to two specific inhibitors of polyamine biosynthetic enzymes was examined. By dose-response analysis (Fig. 5), neither DFMO, a specific inhibitor of ODC (9), nor CGP-48664, a specific inhibitor of SAMDC (8), were found to differentially affect the growth of the parent line or its MDR sublines. As is typical of growth responses to polyamine antagonists, the dose curves for both inhibitors were relatively flat for all cell types. Thus, the MDR sublines were not cross-resistant to either inhibitor.

Fig. 4. Relative growth sensitivity of parent Chinese hamster ovary (CHO) cells and polyamine transport-deficient CHO cells (38) to DENSPM. These findings demonstrate that growth inhibition and presumably transport into cells of DENSPM is dependent upon the polyamine transport system. Bars, SD.
such as high inducibility of SSAT by polyamine analogues (2, 13) and high growth sensitivity to polyamine analogues and inhibitors (2–4, 8, 13, 14). The generality of these observations among other human melanoma cells is further suggested by the similarity of findings in all three cell lines, a finding made more significant by the fact that, although the sublines originated from the same parent line, they were separately derived using three different selecting agents. Lemontt et al. (20) isolated five lines from the RPMI-7932 cells by single-step selection in culture medium containing either vincristine, vinblastine, or colchicine. All lines showed relatively low (4- to 24-fold) levels of drug resistance and were cross-resistant to standard MDR drugs.

In attempting to determine the basis for increased sensitivity to DENSPM in the sublines, we observed that all three sublines displayed an increased ratio in ODC activity to SAMDC activity, due...
mainly to increases in the former enzyme. This was functionally confirmed by the presence of unusually high putrescine levels in the sublines, a disturbance which would be predicted by such enzyme profiles. Despite this difference, both enzymes were effectively down-regulated by DENSPM. Of greater relevance to analogue sensitivity was the finding that analogue accumulation was about 2-fold higher in the sublines, due apparently to increased polyamine transport activity (Table 2). Consistent with the increased intracellular analogue levels, SSAT was induced to a greater extent in the MDR sublines. Polyamine analogues such as DENSMP are taken up by a specific polyamine transport system (Fig. 4), and there are no known functional linkages between polyamine transport and the MDR phenotype. Interestingly, two groups (41, 42) have recently reported that the polyamine transport seems to be decreased in MDR variants. The difference might be related to the different extents of resistance since both the K562 human erythroleukemia variants and the DX5 variants were >50-fold resistant to MDR susceptible agents (41) and since the polyamine transporter is known to show biphasic responses (19). A difference might be related to the different extents of resistance since both the K562 human erythroleukemia variants and the DX5 variants were >50-fold resistant to MDR susceptible agents (41) and since the polyamine transporter is known to show biphasic responses (19). A difference might be related to the different extents of resistance since both the K562 human erythroleukemia variants and the DX5 variants were >50-fold resistant to MDR susceptible agents (41) and since the polyamine transporter is known to show biphasic responses (19).

ACKNOWLEDGMENTS

We gratefully acknowledge the skilled technical assistance of John Miller and Paula Diegelman. We are also indebted to Dr. Henry Hoppe of the Genzyme Corporation for providing the human melanoma parent and MDR cell lines used in this study.

REFERENCES

Sensitivity of Melanoma MDR Variants to Polyamines Analogues

was the finding that analogue accumulation was about 2-fold higher in the sublines, due apparently to increased polyamine transport activity (Table 2). Consistent with the increased intracellular analogue levels, SSAT was induced to a greater extent in the MDR sublines. Polyamine analogues such as DENSMP are taken up by a specific polyamine transport system (Fig. 4), and there are no known functional linkages between polyamine transport and the MDR phenotype. Interestingly, two groups (41, 42) have recently reported that the polyamine transport seems to be decreased in MDR variants. The difference might be related to the different extents of resistance since both the K562 human erythroleukemia variants and the DX5 variants were >50-fold resistant to MDR susceptible agents (41) and since the polyamine transporter is known to show biphasic responses (19). A

4 S. M. Aziz, personal communication.

Downloaded from cancerres.aacrjournals.org on April 30, 2017. © 1994 American Association for Cancer Research.

Collateral Sensitivity of Human Melanoma Multidrug-resistant Variants to the Polyamine Analogue, N^1,N^{11}-Diethynorspermine

Carl W. Porter, Barbara Ganis, Youcef Rustum, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/54/22/5917

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.