ABSTRACT

In the present study, we investigated the effects of high dietary fat on the growth of MX-1 heterotransplanted in athymic mice and its response to mitomycin C (MC) treatment. We found that high fat intake (25% corn oil, w/w) significantly increased tumor growth, but at the same time it also increased the tumor response to MC treatment compared to the control low fat diet (5% corn oil, w/w). In the tumors from mice fed either low (5% w/w) or high (25% w/w) fat, MC treatment induced oxidative challenge, indicated by significantly increased tumor total superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase peroxidase activities, as well as increased tumor lipid peroxidation. On the other hand, glutathione reductase activity was inhibited by MC treatment. Some of the enzymes which are known to activate MC, such as cytochrome b5 reductase and DT-diaphorase, were also induced in the tumor by high dietary fat intake. The enzyme activities in hepatic tissues were also altered by dietary fat and MC treatment but to a lesser extent. We conclude that high dietary fat intake could enhance the chemotherapeutic effect of MC by increasing MC-activating enzyme activities. The observed increase in lipid peroxidation after MC treatment in MX-1 human mammary carcinoma implanted in the nude mice could result from the observed inhibited glutathione reductase activity. It is tempting to speculate that this might be another antineoplastic mechanism for MC in addition to its known role as a bioreductive alkylating agent. Alternatively, glutathione reductase may be a target for bioreductive alkylation.

INTRODUCTION

Altering the levels and/or types of dietary fat markedly influences the development of mammary tumors in experimental animal models (1, 2). High dietary fat levels have been shown to promote the development of mammary tumors in experimental animal models (1, 2). High dietary fat levels have been shown to promote the development of mammary tumors with PUFAs being found to be positively correlated with the content of linoleic acid in the diet, but negatively with the content of n-3 fatty acids (3—7). The mechanisms of dietary effects on mammary tumor development are not clear at the present time, but several possibilities have been proposed, including effects on the endocrine system, the immune system, eicosanoid production, cellular membranes, cell-to-cell interactions, and oxidative stress (for review see Refs. 1 and 8).

Our laboratory has reported previously that dietary fish oil (10% w/w) compared to dietary corn oil (10% w/w) not only decreased the rate of tumor growth but also increased the susceptibility of MX-1 human mammary carcinoma grown in athymic mice to doxorubicin and MC chemotherapy (9). In follow-up preliminary investigations we found that high-fat diets increased the MC antitumor effect toward MX-1 grown in athymic mice. Moreover, when fed the same amount of fat (10%, w/w), the longer the feeding period, the greater effect of high dietary fat on the activities of several of these enzymes, such as cytochrome b5 reductase (14), cytochrome C reductase (15, 16), DT-diaphorase (16, 17), and xanthine oxidase/dehydrogenase (18, 19). We also tested the antioxidant enzyme activities in low- and high-fat diet groups and monitored the alterations of these enzyme activities after MC treatment as well as to evaluate the hypothesis that increased PUFAs content in the diet predisposes the tumor to oxidative stress and therefore to a greater chemotherapeutic response.

MATERIALS AND METHODS

Materials. MC, purified erythrocyte SOD (4000 units/mg protein), buttermilk xanthine oxidase (0.72 units/mg protein), Bakers' yeast GR (190 units/mg protein), and all other reagents for enzyme assays were purchased from Sigma Chemical Co. (St. Louis, MO). The total protein assay reagent kit was obtained from Pierce Chemical Co. (Rockford, IL). Dietary components were purchased from Dyets, Inc. (Bethlehem, PA).

Animals and Diets. Twenty-four young adult female athymic (nude) mice (female heterozygous BALB/c nu nu + +) were used. The mice were housed under aseptic conditions (germ-free laminar-flow hood, sterilized cages, bedding, and water) at 22°C. Autoclaved laboratory mouse chow (Dyets, Inc.) was fed ad libitum before the experimental diets were fed. The experimental diets were composed of the casein-based, semipurified AIN-76A diet (20, 21), containing 25% corn oil (w/w), HF or 5% corn oil (w/w, LF) (Table 1). The diets were prepared every 3 days and kept in the freezer at −23°C until used.

The animals were assigned randomly to the HF or LF diet, with 12 mice in each of the 2 experimental groups. The dietary consumption was recorded daily by weighing the amount of uneaten food. The mice were supplied with fresh diet everyday and the nonconsumed food was discarded. The daily caloric intake was not significantly different between the HF and LF dietary groups (P > 0.05; Table 1).

Tumor Implantation and MC Treatment. Mice were fed their respective experimental diets for 20 days prior to tumor inoculation. A tumor fragment (1—2 mm3) of MX-1 human mammary carcinoma was implanted s.c. on the right foreflank of each nude mouse. The tumor weights were measured weekly or semweekly by measuring the three perpendicular diameters with calipers. Tumor weight was calculated as

\[
Tumor\ weight\ (mg) = \frac{A \times B \times C}{2}
\]

where A, B, and C represent the three perpendicular dimensions of the tumor in millimeters (9).

Ten days after tumor implantation, one-half of the animals in each dietary group was given MC (0.5 mg/kg body weight) i.p. once a week for 4 weeks (HF + MC and LF + MC groups). Tumor and body weights were recorded every 3—4 days. The percentage T/C ratio was calculated from the mean tumor weight of the treated group (+MC) divided by the mean tumor weight of the control group (HF or LF) multiplied by 100 (9).

Twenty-four h after the 4th MC treatment, all the mice were sacrificed by cervical dislocation following anesthesia under a stream of CO2. Liver and tumor were removed immediately. The tumor and liver were homogenized in 3 ml of 50 mM phosphate buffer (pH 7.0). The homogenate was centrifuged at 10,000 x g for 30 min. and the supernatant retained for enzymatic and lipid peroxidation assays.

Received 5/27/94; accepted 10/18/94.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 To whom requests for reprints should be addressed.

2 The abbreviations used are: PUFAs, polyunsaturated fatty acids; CAT, catalase; GR, glutathione reductase; GSH, glutathione; GSHp, glutathione peroxidase; GST, glutathione S-transferase; GSTp, GST peroxidase; HF, high fat diet; LF, low fat diet; MC, mitomycin C; T/C, target/control; SOD, superoxide dismutase; ODCC, ornithine decarboxylase.
Enzyme Assays. Cytochrome b$_5$ reductase activity was measured by the method described by Yubisui et al. (22). The enzyme activity was measured by monitoring the disappearance of NADH absorption at 420 nm ($\epsilon = 1.02 \text{ mm}^{-1} \text{ cm}^{-1}$) at 25°C (22). DT-diaphorase activity was measured as the dicumarol-sensitive reduction of 2,6-dichlorophenolindophenol, according to the method of Ernster (23) and modified by Benson et al. (24). Ornithine decarboxylase activity was measured spectrophotometrically according to the method described by Oberely and Spitz (29). CAT activity was determined by measuring the rate of catalyzed disappearance of H$_2$O$_2$ at 240 nm. The reaction mixture contained 0.3 M potassium phosphate buffer (pH 7.7) with 0.1 mM EDTA, 40 µM cytochrome C, and 0.6 mM potassium cyanide. The reaction was measured at 550 nm. SOD activity was measured using the method described by Obersley and Spitz (29). CAT activity was determined by measuring the sample catalyzed disappearance of H$_2$O$_2$ spectrophotometrically at 240 nm (30). GSHPx activity was measured in a coupled enzyme reaction with GR (31). GSTP activity was measured similarly as GSHPx (32). GR activity was measured by the method according to Racker (33). GST activity was determined by the method according to Mannervik and Guthenberg (34).

Table 1 Composition of experimental dietsa

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Low fat (g)</th>
<th>High fat (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn oil</td>
<td>5.00</td>
<td>25.0</td>
</tr>
<tr>
<td>Casein</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>dt-methionine</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Corn starch</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Sucrose</td>
<td>50.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Cellulose</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>AIN vitamin mix</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>AIN mineral mix</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>Choline bitartrate</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Total Weight</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Caloric density (kcal/g)b</td>
<td>3.85</td>
<td>4.85</td>
</tr>
<tr>
<td>% of caloric from fat</td>
<td>11.69</td>
<td>46.39</td>
</tr>
<tr>
<td>Daily diet consumed (g/mouse)c</td>
<td>4.36 ± 0.89</td>
<td>3.54 ± 0.80</td>
</tr>
<tr>
<td>Daily caloric intake (kcal/mouse)</td>
<td>16.79 ± 3.43</td>
<td>17.17 ± 3.88</td>
</tr>
</tbody>
</table>

a Formulated in accordance with the American Institute of Nutrition (AIN) recommendation (20, 21).

b Calculated as 4.0 kcal/g for starch, sucrose, and casein, and 9.0 kcal/g for corn oil.

c Calculated daily by subtracting the amount of uneaten food from the amount of the added the day before.

Lipid Peroxidation. Malondialdehyde was measured as an indication of lipid peroxidation by the method of Buege and Aust (35). Thiobarbituric acid [0.375% (w/v) with 15% trichloroacetic acid and 0.25 N HCl] was mixed with the test sample and heated in a boiling water bath for 10 min. The precipitate was removed by centrifugation at 1000 × g for 10 min and the supernatant was removed for further analysis. Thiobarbituric reactive substances in the supernatant were measured spectrophotometrically at 535 nm.

Statistical Analysis. Data are expressed as means ± SD with n = 6 per group; differences in means were assessed by ANOVA using the SAS general linear models program. Group means were considered to be significantly different at P < 0.05.

RESULTS

Tumor Growth Studies

In the typical American diet, more than 40% of calories are derived from fat (36). In the present study, we used a diet containing 25% (w/w) corn oil as the high-fat diet (46% of calories), which approximates the typical American diet. Fig. 1 illustrates that feeding a HF diet (25%) to the host animals significantly increased the growth rate of MX-1 human mammary carcinoma, when compared to feeding a LF diet (5%). From 0–24 days after tumor implantation tumor growth was faster in the HF group than in the LF group. Twenty-five days after tumor implantation, tumor growth in the HF animals decreased, presumably due to the large tumor volume, allowing the tumors from the LF group to decrease the differences in tumor size between the two groups.

To assess the effect of dietary fat on MC chemotherapeutic response, one-half of the mice (6 animals) in each dietary group were administered MC at the dose of 0.5 mg/kg body weight. As shown in Fig. 1, the tumors in the HF group were more sensitive to MC than those in the LF group. Although the tumor sizes were almost 2-fold larger in the HF group than in the LF group at the beginning of MC treatment (201 ± 45 mg in the HF group and 94 ± 21 mg in the LF group), the tumors were only half the size in the HF group than those in the LF group at the end of MC treatment, with T/C ratios for the HF and LF groups of 5 and 12, respectively. These results suggest that feeding HF diet (in this study, corn oil) could enhance the chemotherapeutic effect of MC. Fig. 1A shows the body weight changes after...
Fig. 2. Effects of high dietary fat (25% corn oil, w/w), low dietary fat (5% corn oil, w/w), and the treatment of each group with MC (0.5 mg/kg body weight, i.p.) on the tumor cytochrome b5 reductase (A), cytochrome C reductase (B), xanthine oxidase (C) and xanthine dehydrogenase (D) activities. Bars, SD of six independent determinations. Statistical significant differences were: A, in cytochrome b5 reductase activity between HF + MC and LF + MC groups (a, P < 0.001), between HF + MC and HF groups (b, P < 0.01), between LF + MC and LF groups (c, P < 0.05), and between HF and LF groups (d, P < 0.001); C, in xanthine oxidase activity between HF + MC and LF + MC groups (a, P < 0.01) and between HF + MC and HF groups (b, P < 0.01); D, in xanthine dehydrogenase activity between HF + MC and HF groups (a, P < 0.01) and between LF + MC and LF groups (b, P < 0.01).

Fig. 3. Effects of high dietary fat (25% corn oil, w/w), low dietary fat (5% corn oil, w/w, and the treatment of each group with MC (0.5 mg/kg body weight, i.p.) on tumor DT-diaphorase activity. Bars, SD of six independent determinations. Statistical significant differences were between HF + MC and LF + MC groups (a, P < 0.01) and between HF and LF groups (b, P < 0.01).

tumor implantation. There are no significant differences observed between the HF and LF groups, and no significant difference between MC-treated and -untreated groups.

Tumor Enzyme Activities

MC Bioreductive-activating Enzymes. MC is a naturally occurring antibiotic which exhibits activities against a variety of animal and human tumors. It is well known that MC undergoes both one- and two-electron reduction by a wide variety of enzymes to form an activated form which is responsible for its antitumor activity (37–40). In the present study, tumor MC activating enzyme activities were significantly changed by either high fat intake or MC treatment (Fig. 2). Cytochrome b5 reductase activity (Fig. 2A) was increased by HF intake (P < 0.001) and was further increased by MC treatment. Cytochrome C reductase activity was not significantly changed by either HF intake or MC treatment (Fig. 2B). Xanthine oxidase activity was not changed by diet alone but was significantly increased in the HF group after MC treatment (Fig. 2C). Xanthine dehydrogenase activity was increased by MC treatment in both dietary fat groups (Fig. 2D). Tumor DT-diaphorase activity was significantly increased by high dietary fat intake (P < 0.01) and MC treatment had no further effect on its activity (Fig. 3). These results indicated that HF and/or MC treatment could change tumor drug activating enzyme activities which may at least be partially responsible for the greater sensitivities of the tumor to MC treatment in the HF + MC group.

Tumor Antioxidant Enzyme Activities. The one-electron reduction of MC produces a semiquinone intermediate which may give rise to reactive oxygen species through interactions with molecular oxygen and could in turn account for some of the toxic activities in tumor cells (37–40). It has been proposed that dietary fat could cause oxidative damage in tumor cells (41, 42). Fig. 4A shows that GSHPx activity was significantly increased by MC treatment after high fat intake compared to either the HF group or the LF + MC group. There was no difference in GSHPx activity between the different dietary groups without MC treatment. GST activity was not affected by high-dietary fat intake alone but was significantly increased in the HF group after MC treatment compared to the LF + MC group. There was no difference in GST activity between the different dietary groups without MC treatment. GST activity was not affected by high-dietary fat intake alone but was significantly increased in the HF group after MC treatment compared to the LF group (Fig. 4B). GST activity was not altered by high levels of fat intake but was induced by MC treatment in both dietary groups (Fig. 4C). Interestingly, tumor GR activity was not increased by MC treatment, but was inhibited by MC treatment in both dietary groups (Fig. 4D). Tumor SOD and CAT activities (Fig. 5) were significantly higher in the group fed a HF diet, and MC treatment further enhanced the activities in both dietary groups. These findings suggest that high-dietary fat intake induces SOD and CAT activities in tumor tissues, especially after a high intake of fats rich in PUFAs, which is rich in 18:2, n-6. This could be due to the increased formation of reactive oxygen species by either high-dietary fat or MC treatment.

Tumor ODC Activity. In this study ODC activity was not significantly affected by dietary fat intake. It was inhibited by MC treatment (Fig. 6).

Liver Enzyme Activities

Dietary fat intake may not only alter tumor enzyme systems, but it may also change liver enzyme activities. It has been reported that high
Fig. 4. Effects of high dietary fat (25% corn oil, w/w), low dietary fat (5% corn oil, w/w), and treatment of each group with MC (0.5 mg/kg body weight, i.p.) on tumor GSHPx (A), GST (B), GSTP (C), and GR activities (D). Bars, SD of six independent determinations. Statistical significant differences were: A, in GSTPx activity between HF + MC and LF + MC groups (a, P < 0.01) and between HF + MC and LF groups (b, P < 0.01); B, in GST activity between HF + MC and LF + MC (a, P < 0.05); C, in GSTPx activity between HF + MC and LF groups (a, P < 0.01); and D, in GR activity between HF + MC and LF groups (a, P < 0.01) and between LF + MC and LF groups (b, P < 0.05).

Fig. 5. Effects of high dietary fat (25% corn oil, w/w), low dietary fat (5% corn oil, w/w), and treatment of each group with MC (0.5 mg/kg body weight, i.p.) on the tumor SOD (A) and CAT (B) activities. Bars, SD of six independent determinations. Statistical significant differences were: A, in SOD activity between HF + MC and LF + MC groups (a, P < 0.001), between HF + MC and HF groups (b, P < 0.01), between LF + MC and LF groups (c, P < 0.01), and between HF and LF groups (d, P < 0.001); and B, in CAT activity between HF + MC and LF + MC groups (a, P < 0.01), between HF + MC and LF groups (b, P < 0.01), between LF + MC and LF groups (c, P < 0.01), and between HF and LF groups (d, P < 0.05).

Fat intake could change a broad range of hepatic enzyme activities (12, 13). In this study, we found that some hepatic enzyme activities were changed by either high fat intake or MC treatment, but to a lesser extent when compared to the tumors (Table 2). The MC bioreductive-activating enzymes were not significantly changed by either dietary fat intake or MC treatment. GSHPx activity was significantly increased by MC treatment only in the HF group. After MC treatment, there was a significant difference in GSHPx activity between the HF and LF groups (P < 0.01; Table 2). Hepatic GST and GSTPx activities were not affected by either high dietary fat intake or MC treatment. Liver GR activity was significantly inhibited by MC treatment in the HF group (P < 0.01), but was not significantly inhibited in the LF + MC group. Hepatic SOD activity was slightly increased by feeding a high-fat diet and using MC treatment (HF + MC) but the observed differences are not statistically different. CAT activity was not affected by the HF diets but was significantly higher in the HF group after MC treatment. These findings indicate that liver has a more complete antioxidant defense system than the tumor and is less susceptible to the oxidative challenge, such as caused by a high intake of PUFAs or by MC treatment. Hepatic ODC was significantly inhibited by MC treatment (P < 0.01), same as in the tumors.

Lipid Peroxidation

The data presented in Fig. 7 show that in liver, thiobarbituric reactive substances formation was not affected by either high-dietary fat or MC treatment. As seen with the antioxidant enzyme activities, the more complete prevention system in the liver protects it from the oxidative challenge by either HF intake or MC treatment. Conversely, in tumor tissue MC treatment significantly increased malondialdehyde formation (P < 0.01), again indicating that MC induces oxidative stress in the tumor which in part may be responsible for its antineoplastic response.

DISCUSSION

Dietary fat intake plays an important role in the regulation of metabolism, clearance, and toxicity of xenobiotics via modulation of xenobiotic metabolism enzyme systems. This kind of influence may alter the therapeutic effects of drugs and the toxicity or carcinogenicity of environmental chemicals (for review see Ref. 11). It has been reported that dietary fat has changed hepatic cytochrome P-450s and other monoxygenase activities (11—13, 43, 44). Mitomycin C is an antitumor quinone which undergoes bioreductive metabolism to generate a reduced electrophilic species which can alkylate DNA (37—40). Enzymes which have been shown to be capable of catalyzing the reductive activation of MC include cytochrome b5 reductase (14), cytochrome C reductase (15, 16), xanthine oxidase/dehydrogenase (18, 19), and DT-Diaphorase (16, 17). Alteration of these enzyme activities can directly...
change the antitumor effect of MC. Our laboratory first reported that a 10% fish oil diet made MX-1 human mammary carcinoma more susceptible to MC and doxorubicin (9). In this study, we found that the MC antitumor effect was enhanced by feeding the host animals a HF diet (25% corn oil, w/w). At the same time, the activities of cytochrome b$_{5}$ reductase and DT-diaphorase in the MX-1 tumor were also increased by the HF diet, a finding consistent with others (48, 49). Conversely, we did not find significant changes in hepatic xenobiotic activation of mitomycin C by dietary fat.

Kaasgaard et al. (42) found that the animals fed a menhaden oil diet, which is rich in n-3 fatty acids, had a high level of lipid peroxidation in their liver. At the same time, GST activity was also enhanced. Similar results were also reported in tumor tissues (48, 49).

In this study, we observed an increase in tumor activities of SOD, CAT, GST, and GSTP by feeding the HF diet. Tumor lipid peroxidation was also increased by the HF diet, a finding consistent with others (48, 49). Conversely, we did not find significant changes in hepatic xenobiotic metabolism and antioxidant enzyme activities or lipid peroxidation, as reported by Chen et al. (48) and Gonzalez et al. (49). This might be due to other or more active protective mechanisms being present in liver.

An interesting discovery in the present study is that MC treatment can cause significant oxidative challenge in the tumor as indicated by the increased activities of GSTP, GSTP, SOD, CAT, and increased lipid peroxidation. This observation could at least in part be related to the enhancement of MC bioreductive-activating enzyme systems. After activation, MC can form a semiquinone intermediate which can interact with molecular oxygen to produce toxic reactive oxygen species. The increased reactive oxygen species in tumor tissues could cause significant oxidative stress and cytotoxicity. It is also possible that the significant oxidative challenge after MC treatment may be due to the observed inhibition of GR in tumor tissue. Under normal conditions GR

Table 2 Effects of dietary fat and MC treatment on hepatic enzyme activities

<table>
<thead>
<tr>
<th>Enzyme activities</th>
<th>HF + MC</th>
<th>LF + MC</th>
<th>HF</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytochrome b$_{5}$ reductase (nmol/min/mg protein)</td>
<td>30.3 ± 2.5 a</td>
<td>24.3 ± 1.4</td>
<td>28.7 ± 5.5</td>
<td>22.3 ± 4.18</td>
</tr>
<tr>
<td>Cytochrome C reductase (nmol/min/mg protein)</td>
<td>103 ± 19 a</td>
<td>81 ± 16 b</td>
<td>86 ± 14</td>
<td>64 ± 18</td>
</tr>
<tr>
<td>DT-diaphorase (nmol/min/mg protein)</td>
<td>10.4 ± 1.5 a</td>
<td>7.8 ± 1.1</td>
<td>9.5 ± 1.6</td>
<td>10.5 ± 2.3</td>
</tr>
<tr>
<td>Xanthine dehydrogenase (nmol/min/mg protein)</td>
<td>585 ± 104</td>
<td>442 ± 106</td>
<td>445 ± 98</td>
<td>343 ± 79</td>
</tr>
<tr>
<td>Xanthine oxidase (pmol/min/mg protein)</td>
<td>175 ± 37 a</td>
<td>128 ± 25</td>
<td>124 ± 29</td>
<td>85 ± 25</td>
</tr>
<tr>
<td>CAT (OD change/min/mg protein)</td>
<td>9.0 ± 2.0 b</td>
<td>6.0 ± 1.6 c</td>
<td>5.8 ± 1.2</td>
<td>4.4 ± 1.0</td>
</tr>
<tr>
<td>SOD (unit/mg protein)</td>
<td>9.1 ± 1.2 a</td>
<td>7.3 ± 1.1 a</td>
<td>7.6 ± 1.1</td>
<td>6.1 ± 0.7</td>
</tr>
<tr>
<td>GST (nmol/min/mg protein)</td>
<td>60.5 ± 7.3c</td>
<td>36.9 ± 8.0</td>
<td>42.9 ± 5.7</td>
<td>29.6 ± 10.5</td>
</tr>
<tr>
<td>GSTP (nmol/min/mg protein)</td>
<td>106 ± 16d</td>
<td>112 ± 26</td>
<td>198 ± 47</td>
<td>157 ± 26</td>
</tr>
<tr>
<td>GSTPx (nmol/min/mg protein)</td>
<td>115 ± 23</td>
<td>78 ± 19</td>
<td>83 ± 24</td>
<td>87 ± 21</td>
</tr>
<tr>
<td>ODC (pmol/min/mg protein)</td>
<td>56.7 ± 7.2</td>
<td>55.4 ± 12.8</td>
<td>59.3 ± 14.7</td>
<td>46.1 ± 17.3</td>
</tr>
<tr>
<td>GR (unit/mg protein)</td>
<td>32.2 ± 5.7a</td>
<td>36.5 ± 7.7</td>
<td>51.6 ± 8.6</td>
<td>53.3 ± 6.5</td>
</tr>
</tbody>
</table>

a P < 0.05 for difference from LF + MC.
b P < 0.01 for difference from LF + MC.
c P < 0.05 for difference from HF.
d P < 0.01 for difference from HF.
e P < 0.01 for difference from LF.
f P < 0.05 for difference from LF.
plays an important role to regenerate reduced GSH. Depletion of GSH by either increasing its oxidation or inhibiting its regeneration will cause oxidative stress (50). It is reasonable to assume that the increased oxidative stress induced in MC treatment contributes to its antineoplastic activity.

ODC is known as a biomarker for tumor growth (51). In this study we observed an inhibition of tumor and liver ODC activity by MC which correlated with the inhibition of tumor growth. Recently, McCann and Pegg (51) suggested that ODC might be used as a target for cancer chemotherapy. Due to our observations that high-dietary fat did not affect tumor ODC activity, while tumor growth was affected by high dietary fat, it is questionable whether ODC can be used as a biomarker for tumor growth or as a target for cancer chemotherapy. These aspects require further investigation.

In summary, feeding a HF diet can increase the response of MX-1 human mammary carcinoma grown in athymic nude mice to MC treatment. This may be caused by the observed increase in MC bioreductive-activating enzyme activities in the tumor. MC significantly induces oxidative stress within the tumor, which is exacerbated in the HF group. The GR inhibition and concomitant increase in lipid peroxidation may contribute to the antineoplastic activity of MC. The findings reported herein demonstrate that it is possible to manipulate the responsiveness of tumors to chemotherapy by dietary manipulation, an area that requires further investigation.

REFERENCES

Downloaded from cancerres.aacrjournals.org on July 22, 2017. © 1994 American Association for Cancer Research.
Enhancement of the Antineoplastic Effect of Mitomycin C by Dietary Fat

Yu Shao, Lani Pardini and Ronald S. Pardini

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/54/24/6452

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.