Successful expression of the cytosine deaminase (CD) suicide gene in vivo is demonstrated in three weakly immunogenic murine tumor models: the 102 and 205 fibrosarcomas and the 38 adenocarcinoma. Normal mammalian cells do not contain cytosine deaminase, but tumor cells transduced with retroviral vectors containing the CD gene metabolize the relatively nontoxic prodrug 5-fluorocytosine to the highly toxic 5-fluorouracil. In vitro cells expressing the CD gene are killed by 5-fluorocytosine while unmodified cells are not. When injected into syngeneic mice, CD+ tumors can also be eliminated in vivo by systemic treatment with 5-fluorocytosine without significant toxicity to the host. Animals whose CD+ tumors were eliminated with prodrug treatment resist subsequent rechallenge with unmodified wild type tumor. This posttreatment immunity appears to be tumor specific. Applications of the CD system in gene therapy models are discussed.

INTRODUCTION

Viruses, bacteria, and fungi have many distinct metabolic pathways not found in mammalian cells. Drugs developed for treatment of infections often target these unique enzyme pathways which metabolize relatively nontoxic prodrugs to highly toxic forms. Transfer of the genes encoding these distinctive enzymes, sometimes called suicide genes, to mammalian cells confers upon the genetically altered cells novel chemosensitivity to prodrugs.

CD is an enzyme found in some bacteria and fungi which deaminates cytosine to uracil. It also deaminates the relatively nontoxic 5-FC to the highly toxic 5-FU. Normal mammalian cells do not contain CD and are relatively resistant to 5-FC. We and others have recently shown that transfer of a modified CD gene to mammalian cells renders them selectively sensitive to 5-FC in vitro and in vivo. Such a negative selection system could be quite useful in basic science and gene therapy studies if it could also function in vivo.

In this report, we demonstrate that tumor cells which have been engineered with retroviral vectors to express the CD gene can be eliminated in vivo by systemic treatment of animals with parenteral 5-FC. Animals rendered tumor free by treatment with 5-FC also develop posttreatment immunity to wild type, unmodified tumor.

MATERIALS AND METHODS

Cell Lines. All tumor cell lines were derived from C57BL/6 mice. All lines were cloned prior to gene transduction. 38 is a nonmetastatic dimethylhydrazine-induced colon adenocarcinoma, while 102 and 205 are nonmetastatic, methylcholanthrene-induced fibrosarcomas. As previously described, the tumors are weakly immunogenic (8). PLCD12 and LNL6 are nonmalignant murine fibroblast cell lines which produce retroviral vectors; both were derived from PA317 cells which were ultimately derived from NIH/3T3 TK- cells (9).

PLCD12 expresses genes for cytosine deaminase and NeoR while LNL6 expresses the NeoR gene only. Cells were grown in RPMI supplemented with 10% heat-inactivated fetal calf serum, 50 units/ml penicillin, 50 μg/ml streptomycin, and 2 mm glutamine.

Gene Transfer. Tumor cells were transduced with retroviral vectors as described previously (10). The suffix "CD" indicates the cell was transduced with a vector containing the CD and NeoR genes, while the suffix "CDP" identifies a cell transduced with a vector containing the CD gene and a puromycin resistance gene. Cells were exposed to vector supplemented with protamine (5 μg/ml) overnight and then grown for 2 days in RPMI supplemented with 10% heat-inactivated fetal calf serum. They were then grown in G418 (0.6 mg/ml) for 10–14 days and cloned by limiting dilution before further characterization.

Enzyme Activity Measurement. CD enzyme activity was determined as described previously by measuring in vitro conversion of tritiated cytosine to uracil by lysates of cells (6). Cytosine and uracil were separated by thin layer chromatography, and radioactivity was quantitated by liquid scintillation. Activity is described as pmol cytosine converted to uracil/10⁶ cells/min.

Clonogenic Assays. Five hundred cells were inoculated into 3.5-cm diameter tissue culture wells and grown for 7–10 days in the presence of 5-FC at concentrations specified in the tables. Cells were then fixed with methanol and stained with Giemsa; macroscopic colonies were counted.

Tumor Growth and Drug Treatment in Vivo. Animals were inoculated s.c. with tissue culture-derived single cell suspensions of cells in 0.1 ml of tissue culture medium or Hank's balanced salt solution. 5-FC was dissolved in phosphate-buffered saline (12.5 mg/ml), and mice were treated i.p. with 37.5 mg twice daily for 10 days. Animals were followed until death from tumor growth or for at least 8 weeks following tumor inoculation.

Statistics. Standard descriptive statistics, the Student t test, regression analysis, and χ² tests were used (11).

RESULTS

Tumor Cells Expressing the CD Gene Are Sensitive to 5-FC in Vitro. Three poorly immunogenic murine tumor cell lines were transduced with the CD gene in vitro. Following selection in G418 and cloning, CD enzyme activity was measured (Table 1). Southern blots were performed on the 38CD and 102CD lines, which demonstrated a single copy of the CD gene in the cells (data not shown). Cell morphology and growth in normal media were unchanged in cells expressing CD. To learn if CD-expressing cells had been rendered sensitive to 5-FC, clonogenic assays were performed in the presence of this prodrug (Fig. 1). Tumors 38CD and 102CD exhibited markedly reduced survival in 5-FC. 205CD was also inhibited but only at higher 5-FC concentrations. There was a clear dose-response relationship between 5-FC concentration and killing in all three lines. The three cell lines were equally sensitive to 5-fluorouracil in vitro; 50% lethal dose was approximately 1 μM 5-FU (data not shown). The relationship between CD activity and 5-FC sensitivity was explored in a panel of 38CD tumor cell lines containing a single copy of the CD gene but which varied in enzyme expression. Regression analysis demonstrated a strong inverse relationship between CD enzyme activity and clonogenic survival in 5-FC. The correlation coefficient for the relationship was 0.92.

CD-expressing Tumor Cell Lines Sensitive to 5-FC in Vitro Can Be Eliminated in Vivo by Systemic 5-FC Treatment. Since some CD+ tumor cells could be killed in vitro by 5-FC, it seemed possible that in vivo these tumors could be inhibited by systemically adminis-
tered 5-FC. This could occur only if the tumors cells continued to express the gene in vivo; if sufficiently high 5-FC blood or tissue levels could be attained and sustained; and if such drug levels were not lethally toxic to the animals. To find a potentially effective tolerable dose, mice were injected with 1×10^5 205CD cells (approximately 10 times the normally tumorigenic dose of cells); 4 days later, cohorts of mice were treated with various doses of 5-FC. While tumor growth was slower and survival extended with regimens as modest as 5 mg twice a day for 5 days, complete suppression of tumor growth (in at least some treated animals) was not seen until a dose of 37.5 mg twice a day for 5 days was given. Drug treatment was extended to 37.5 mg twice a day for 10 days without deaths due to drug treatment and was the treatment regimen used in the remainder of these studies (data not shown). Further dose escalation was not performed.

Table 2 summarizes the suppression of three different CD+ tumors in animals treated with 5-FC. 5-FC treatment did not reduce the incidence or growth rate of wild type tumor. CD+ tumor incidence was dramatically reduced with all three tumor lines. CD+ tumors which did emerge appeared 2–8 weeks after drug treatment and grew more slowly than untreated tumors. There seemed to be a correlation in vivo tumor suppression with sensitivity to 5-FC in clonogenic assays (described above) in that 205CD exhibited greater resistance to 5-FC in vitro and in vivo.

Delayed 5-FC treatment was less effective in eliminating CD+ tumors. Fig. 2 summarizes the growth of 38CD tumors in mice receiving a single 10-day course of 5-FC initiated on days 4, 11, or 18 after tumor inoculation. As expected, all untreated mice grew tumors; and no animals treated at day 4 grew tumors. Three of five mice treated at 11 days and five of five treated at 18 days grew tumors. However, the growth curves indicate that while delayed drug treatment did not completely eliminate tumors, it did significantly retard tumor growth.

CD enzyme activity was measured in tumors which grew in animals which had received 5-FC (Fig. 3). Significant CD activity was detected in four of five of the 38CD reisolates and four of four 102CD reisolates after 1 month of growth in vivo, while almost none was present in three of three 205CD reisolates examined. However, in all cases, the enzyme activity was less than in the original tumor line. Interestingly, reduction of enzyme activity was also seen in 38CD tumors which were grown for 1 month in normal immunocompetent animals not receiving 5-FC.

Growth of distant wild type tumor was unaffected by injection of CD+ tumor cells and systemic treatment with 5-FC. Animals which were injected with tumorigenic doses of wild type tumor on one flank and with CD+ tumor cells on the contralateral flank were treated with 5-FC. The wild type tumors grew normally while the CD+ tumors did not grow (data not shown). This was expected since the toxic 5-FU was produced intracellularly and was not likely to achieve significant systemic concentrations.

Mice Pretreated with CD+ Tumors and 5-FC Resist Subsequent Challenge with Wild Type Tumor. To learn if mice which had rejected CD+ tumors after 5-FC treatment had developed immunity to wild type tumor, animals were rechallenged with a tumorigenic dose of unmodified tumor cells. In all three lines, animals pretreated with CD+ tumor and 5-FC exhibited significant resistance to wild type tumor (Table 3). There appeared to be tumor specificity to the protection in that pretreatment with 102CD but not 38CD was effective in providing protection against wild type 102.

Immunogenicity of CD. Because CD is a bacterial protein, it is possible that it would be immunogenic. The decreased tumorigenicity of 102CD cells and the reduced CD activity in 38CD tumors passed through normal mice would be consistent with that possibility. To more precisely test this, mice were immunized with NIH-3T3-derived syngeneic, nonmalignant vector producer cells which expressed NeoR only (LNL6) or both CD and NeoR genes (PLCD12). They were challenged with either wild type or CD+ tumor cells (Table 4). 38CDP cells were rejected by animals immunized with these unrelated nonmalignant CD+ cells but not by normal mice or animals immunized with cells expressing only NeoR. (38CDP expresses CD and a puromycin resistance gene; it does not contain a NeoR gene.) Immunization with PLCD12 afforded no protection against unmodified 38 tumor cells.

DISCUSSION

Recently, we reported the modification and expression of the Escherichia coli cytosine deaminase gene in mammalian cells and the sensitivity of such CD gene-modified cells to 5-FC in vitro (6). The experiments summarized here demonstrate that the CD gene can also function as a negative selection system or suicide gene in vivo. The system could be used in a wide variety of settings such as homologous recombination studies (12), safety systems for gene therapy (13), and gene therapy of cancer (14–16) in a manner similar to the HSV-1-TK gene. Others have attempted to use CD nongenetically by producing CD immunoconjugates targeted to tumor antigens, thereby attempting to confer tumor-specific drug sensitivity (17).

The sensitivity of tumors to 5-FC was related to enzyme activity, 5-FC dose, and time of treatment. Tumor cells escaped killing if either the levels of CD gene expression were low or the dose or duration of 5-FC treatment were inadequate; thus, successful application of the system in vivo will require maximization of intracellular expression of the enzyme as well as effective prodrug delivery. In these experiments, the CD gene was under the influence of the constitutive Moloney murine leukemia virus long terminal repeat, a type of general purpose viral promoter (18). Depending on the potential application, it is conceivable that tissue-specific promoters and/or enhancer elements would be more effective. This is especially true for use of the CD system in nonneoplastic tissue since it has been observed that general purpose viral promoters, while effective in vitro, sometimes fail to express genes under their influence once cells are transferred back into a syngeneic host (19). 5-FC delivery in vivo will also be critical in successful application of the system. In vitro death of cells sensitive to 5-FC seems to require continuous exposure to drug for at least 5 days. Another group studying 5-FC pharmacokinetics in nude mice bearing a CD+ human tumor xenograft recently reported that bolus i.p. injection was more effective than continuous i.v. infusion in suppressing tumor growth (20). However, animals on the bolus protocol were treated for many more days than those in the continuous infusion group. Thus, the duration of drug treatment could be very important for elimination of CD+ cells in vivo. This would be consistent with our observation of significant CD enzyme activity in some larger tumors which were initially inhibited but resumed growth after 10 days of drug treatment.

Animals treated with CD+ tumors and 5-FC often exhibited resistance to later challenge with wild type tumor. Among the tumors tested here, there was specificity to the protection, suggesting that the
5-FC µg/ml

Fig. 1. Clonogenic growth potential in 5-FC of tumor cells transduced with the CD gene. Five hundred cells were inoculated into each well containing 5-FC at the designated concentration. Colonies were stained and counted 7 days later. Each condition was performed in triplicate. Bars, SD; where bars are not visible, SD was less than 2.

Table 2 CD+ tumors are inhibited in vivo by systemic 5-FC

<table>
<thead>
<tr>
<th>Tumor</th>
<th>No 5-FC</th>
<th>5-FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>20/20 (100)</td>
<td>24/24 (100)</td>
</tr>
<tr>
<td>102CD</td>
<td>18/28 (64)</td>
<td>2/35 (6)%</td>
</tr>
<tr>
<td>205</td>
<td>10/10 (100)</td>
<td>10/10 (100)</td>
</tr>
<tr>
<td>205CD</td>
<td>15/15 (100)</td>
<td>8/17 (47)%</td>
</tr>
<tr>
<td>38</td>
<td>9/9 (100)</td>
<td>11/11 (100)</td>
</tr>
<tr>
<td>38CD</td>
<td>10/10 (100)</td>
<td>3/50 (6)%</td>
</tr>
<tr>
<td>38CDP</td>
<td>10/10 (100)</td>
<td>0/10 (0)</td>
</tr>
</tbody>
</table>

* Mice were injected with 1×10^6 tumor cells. Three to 5 days later, treatment with 5-FC was started as described in “Materials and Methods.”

** CD+ tumors in 5-FC treated animals emerged 2-8 weeks later than those in mice not treated with 5-FC.

Effect was T-cell mediated. Several explanations for this effect exist: (a) it is possible that elimination of CD+ cells by 5-FC is the metabolic equivalent of surgical tumor amputation, a method which sometimes induces immunity; (b) it is possible that the death of CD+ cells in vivo leads to more effective antigen presentation. Conceivably, the inflammatory response to the dying cells could recruit and activate antigen-presenting cells; and (c) the CD protein itself seems to be immunogenic. While immunity directed against the CD protein will not lead to direct rejection of wild type tumor which does not express CD, the protein may function as a superantigen of sorts leading to polyclonal activation of lymphocytes, some of which may be cross-reactive with the tumor. As noted above, this immunological effect was not potent enough to cause rejection of bulky preexisting wild type tumor in an animal bearing both wild type and CD+ tumors. However, the later rejection of wild type tumor after immunization with CD+ tumors suggests that the CD suicide gene could be useful in development of autologous tumor vaccines for treatment of minimal residual disease.

Suicide gene systems using the herpes thymidine kinase gene are being used in clinical trials for treatment of brain tumors (16) and for adoptive immunotherapy of human immunodeficiency virus infection (13). In the brain tumor trial cells secreting HSV-1-TK vectors are injected into a tumor bed in an attempt to render the tumor sensitive to the prodrug. CD may be a useful alternative to the HSV-1-TK system. One advantage of CD is that its prodrug, 5-FC, while useful in treatment of some fungal disorders, can be replaced by many alternative agents in the treatment of such infections. Contrarily, the prodrugs for the HSV-1-TK system, ganciclovir and acyclovir, are the only effective agents for the treatment of herpes infections, and their use could result in unwanted, premature elimination of the modified cells in a gene therapy protocol. The availability of alternate suicide

Table 3 Resistance to wild type tumor exhibited by animals pretreated with 5-FC and tumor cells transduced with the CD gene

<table>
<thead>
<tr>
<th>Tumor challenge</th>
<th>Pretreatment</th>
<th>Tumor incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>None</td>
<td>15/15 (100)</td>
</tr>
<tr>
<td></td>
<td>38CD</td>
<td>6/29 (21)</td>
</tr>
<tr>
<td>102</td>
<td>None</td>
<td>15/15 (100)</td>
</tr>
<tr>
<td></td>
<td>102CD</td>
<td>12/23 (52)</td>
</tr>
<tr>
<td></td>
<td>38CD</td>
<td>9/10 (90)</td>
</tr>
<tr>
<td>205</td>
<td>None</td>
<td>10/10 (100)</td>
</tr>
<tr>
<td></td>
<td>205CD</td>
<td>2/10 (20)</td>
</tr>
</tbody>
</table>

* Animals were challenged with 10^6 wild type 38 or 102 cells or 10^4 205 cells.

* Four to 6 weeks prior to challenge with wild type tumor, mice received 10^6 38CD or 102CD cells or 10^4 205CD cells, followed by a 2-week course of 5-FC.

* Number of animals with tumor per number of animals challenged.

* Tumor incidence significantly less than in no pretreatment group; P was calculated from χ^2 analysis.

Fig. 2. Effect of delayed 5-FC treatment on the growth of 38CD tumors. Mice received a 10-day course of 5-FC initiated 4, 11, or 18 days after tumor inoculation [average tumor volume (± SE) at various times after tumor inoculation is plotted]. Tumor incidence is described in the text.
gene systems such as CD may provide greater flexibility in the gene therapy of cancer and other disorders.

REFERENCES

Tumors Expressing the Cytosine Deaminase Suicide Gene Can Be Eliminated \textit{in Vivo} with 5-Fluorocytosine and Induce Protective Immunity to Wild Type Tumor

Craig A. Mullen, Melissa M. Coale, Robert Lowe, et al.