Expression of the Prostate-specific Membrane Antigen


Urologic Oncology Research Laboratory, Memorial Sloan-Kettering Cancer Center, New York, New York 10021

ABSTRACT

We have recently cloned a 2.65-kilobase complementary DNA (cDNA) encoding the prostate-specific membrane antigen (PSM) recognized by the 7E11-C5.3 anti-prostate monoclonal antibody. Immunohistochemical analysis of the LNCaP, DU-145, and PC-3 prostate cancer cell lines for PSM expression using the 7E11-C5.3 antibody reveals intense staining in the LNCaP cells with no detectable expression in both the DU-145 and PC-3 cells. Coupled in vitro transcription/translation of the 2.65-kilobase full-length PSM cDNA yields an $M_r$ 84,000 protein corresponding to the predicted polypeptide molecular weight of PSM. Posttranslational modification of this protein with pancreatic protein microsomes yields the expected $M_r$ 100,000 PSM antigen. Following transfection of PC-3 cells with the full-length PSM cDNA in a eukaryotic expression vector, we detect expression of the PSM glycoprotein by Western analysis using the 7E11-C5.3 monoclonal antibody. Ribonuclease protection analysis demonstrates that the expression of PSM mRNA is almost entirely prostate specific in human tissues. PSM expression appears to be highest in hormone-deprived states and is hormonally regulated by steroids, with 5α-dihydrotestosterone down-regulating PSM expression in the human prostate cancer cell line LNCaP by 8–10-fold, testosterone down-regulating PSM by 3–4-fold, and corticosteroids showing no significant effect. Normal and malignant prostatic tissues consistently show high PSM expression, whereas we have noted heterogeneous, and at times absent, expression of PSM in benign prostatic hyperplasia. LNCaP tumors implanted and grown both orthotopically and s.c. in nude mice abundantly express PSM, providing an excellent in vivo model system to study the regulation and modulation of PSM expression.

INTRODUCTION

Prostate cancer is among the most significant medical problems in the United States because the disease is now the most common malignancy diagnosed in American males. In 1992, there were over 132,000 new cases of prostate cancer detected with over 36,000 deaths attributable to the disease, representing a 17.3% increase over 4 years (1). Five-year survival rates for patients with prostate cancer range from 88% for those with localized disease to 29% for those with metastatic disease. The rapid increase in the number of cases appears to result in part from an increase in disease awareness as well as the widespread use of clinical markers such as the secreted proteins PSA and PAP (2). We have recently reported the molecular cloning, from the human prostate adenocarcinoma cell line LNCaP, of a complementary DNA encoding a $M_r$ 100,000 prostate-specific membrane glycoprotein (3), recognized by the anti-prostate monoclonal antibody 7E11-C5.3 (4). The LNCaP cell line was derived from a suprACLAVICULAR lymph node of a patient with hormone-refractory prostate cancer (5). Currently, LNCaP cells provide the best in vitro model system to study human prostate cancer since they produce all three prostate biomarkers, PSA, PAP, and PSM. The cells possess an aneuploid male karyotype with a Y chromosome, express a high affinity androgen receptor, and are hormonally responsive to both testosterone and DHT. Because PSM appears to be a transmembrane glycoprotein, it is considered an attractive target for both antibody-directed imaging and targeting of prostatic tumor deposits (6). In this paper, we demonstrate expression of PSM protein in LNCaP cell membranes and in PC-3 cells transfected with PSM cDNA. In addition, we report the characterization of PSM mRNA expression in human tissues and in response to steroid hormones.

MATERIALS AND METHODS

Cells and Reagents. The LNCaP, DU-145, and PC-3 cell lines were obtained from the American Type Culture Collection. Details regarding the establishment and characteristics of these cell lines have been published previously (5, 7, 8). Unless specified otherwise, LNCaP cells were grown in RPMI 1640 supplemented with l-glutamine, nonessential amino acids, and 5% fetal calf serum (Gibco-BRL, Gaithersburg, MD) in a CO2 incubator at 37°C. DU-145 and PC-3 cells were grown in minimal essential medium supplemented with 10% fetal calf serum. All cell media were obtained from the MSKCC media preparation facility. Restriction and modifying enzymes were purchased from Gibco-BRL unless otherwise specified. The modified 7E11-C5.3 anti-PSM monoclonal antibody CYT-356 was provided by the Cytogen Corporation, Princeton, NJ. All other chemical reagents were of the highest grade possible and were obtained from Sigma Chemical Company, St. Louis, MO.

Immunohistochemical Detection of PSM. We used the avidin-biotin method of detection to analyze prostate cancer cell lines for PSM antigen expression (9). Cell cytospins were made on glass slides using 5 × 10^6 cells/100 μl per slide. Slides were washed twice with phosphate-buffered saline and then incubated with the appropriate blocking serum for 20 min. The blocking serum was drained off, and the cells were incubated with diluted 7E11-C5.3 (5 μg/ml) monoclonal antibody for 1 h. Samples were then washed with phosphate-buffered saline and sequentially incubated with secondary antibodies for 30 min and with avidin-biotin complexes for 30 min. Diamobenzidine served as our chromogen and color development followed by hematoxylin counterstaining and mounting. Duplicate cell cytospins were used as controls for each experiment. As a positive control, the anti-cytokeratin monoclonal antibody CAM 5.2 was used following the same procedure described above. Human EJ bladder carcinoma cells served as a negative control.

In Vitro Transcription/Translation of PSM Antigen. Plasmid 55A containing the full-length 2.65-kilobase PSM cDNA in the plasmid pSPORT 1 (Gibco-BRL) was transcribed in vitro using the Promega TNT system (Promega Corp., Madison, WI). T7 RNA polymerase was added to the cDNA in a reaction mixture containing rabbit reticulocyte lysate, an amino acid mixture lacking methionine, buffer, and 35S)methionine (Amersham, Arlington Heights, IL), and incubated at 30°C for 90 min. Posttranslational modification of the resulting protein was accomplished by the addition of pancreatic protein microsomes into the reaction mixture (Promega Corp.). Protein products were analyzed by electrophoresis on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels which were subsequently treated with Amplify autoradiography enhancer (Amersham) according to the manufacturer’s instructions and dried at 80°C in a vacuum dryer. Gels were autoradiographed overnight at 70°C using Hyperfilm MP (Amersham).

Transfection of PSM into PC-3 Cells. The full-length PSM cDNA was subcloned into the pREP7 eukaryotic expression vector (Invitrogen, San Diego, CA). Plasmid DNA was purified from transformed DH5α bacteria (Gibco-BRL) using Qiagen maxi-prep plasmid isolation columns (Qiagen, Inc., Chatsworth, CA). Purified plasmid DNA (6–10 μg) was digested with 900 μl of OptiPrep media (Gibco-BRL) and mixed with 30 μl of Lipofectin.
reagent (Gibco-BRL) which had been previously diluted with 900 μl of OptiMEM media. This mixture was added to T-75 flasks of 40–50% confluent PC-3 cells in OptiMEM media. After 24–36 h, cells were trypsinized and split into 100-mm dishes containing RPMI 1640 supplemented with 10% fetal calf serum and 1 mg/ml of Hygromycin B (Calbiochem, La Jolla, CA). The dose of Hygromycin B used was determined previously by a time course/dose response cytotoxicity assay. Cells were maintained in this media for 2–3 weeks with changes of media and Hygromycin B every 4–5 days until discrete colonies appeared. Colonies were isolated using 6-mm cloning cylinders and expanded in the same media. As a control, PC-3 cells were also transfected with the pREP7 plasmid alone. RNA was isolated from the transfected cells, and PSM mRNA expression was detected by both RNase protection analysis (described later) and by Northern analysis.

Western Blot Detection of PSM Expression. Crude protein lysates were isolated from LNCaP, PC-3, and PSM-transfected PC-3 cells as described previously (10). LNCaP cell membranes were also isolated according to published methods (10). Protein concentrations were quantitated by the Bradford method using the Bio-Rad protein reagent kit (Bio-Rad, Richmond, CA). Following denaturation, 20 μg of protein was electrohoresed on a 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel at 25 mA for 4 h. Gels were electroblotted onto Immobilon P membranes (Millipore, Bedford, MA) overnight at 4°C. Membranes were blocked in 0.15 M NaCl-0.01 M Tris-0.05% Tween-20 (TTX) for 1 h and then incubated overnight with a 1:1000 dilution of the 7E11 monoclonal antibody (10 μg/ml). Blots were washed 4 times with 0.15 M NaCl-0.01 M Tris-0.05% TTX and incubated for 1 h with rabbit anti-mouse IgG (Accurate Scientific, Westbury, NY) at a concentration of 10 μg/ml. Blots were then washed 4 times with TTX and labeled with 125I-protein A (Amersham) at a concentration of 1 million cpm/ml. Blots were then washed 4 times with TTX- and dried on Whatman 3MM paper, followed by overnight autoradiography at ~70°C using Hyperfilm MP (Amersham).

Orthotopic and s.c. LNCaP Tumor Growth in Nude Mice. LNCaP cell cultures were harvested from subconfluent cultures by a 1-min exposure to a solution of 0.25% trypsin and 0.02% EDTA. Cells were resuspended in RPMI 1640 with 5% fetal bovine serum and washed and diluted in either Matrigel (Collaborative Biomedical Products, Bedford, MA) or calcium and magnesium-free Hank’s balanced salt solution. Only single cell suspensions with greater than 90% viability by trypsin blue exclusion were used for in vitro injection. Male athymic Swiss (nu/nu) nude mice 4–6 weeks of age were obtained from the MSKCC animal facility. For s.c. tumor cell injection, one million LNCaP cells resuspended in 0.2 ml of Matrigel were injected into the hindlimb of each mouse using a disposable syringe fitted with a 28-gauge needle. For orthotopic injection, mice were first anesthetized with an i.p. injection of pentobarbital and placed in the supine position. The abdomen was cleaned with Betadine, and the prostate was exposed through a midline incision. LNCaP tumor cells (2.5 million) in 0.1 ml were injected directly into either ventral lobe using a 1-ml disposable syringe and a 28-gauge needle. LNCaP cells with and without Matrigel were injected. Abdominal closure was achieved in one layer using Autoclip wound clips (Clay Adams, Parsippany, NJ). Tumors were harvested as described previously; PSM expression was analyzed by ribonuclease protection analysis.

RESULTS

Immunohistochemical Detection of PSM. Using the 7E11-C5.3 anti-PSM monoclonal antibody, PSM expression is clearly detectable in the LNCaP prostate cancer cell line but not in the PC-3 and DU-145 cell lines (Fig. 1) in agreement with results published previously (4).

In vitro Transcription/Translation of PSM Antigen. As shown in Fig. 2, coupled in vitro transcription/translation of the 2.65-kilobase full-length PSM cDNA yields a M, 75,000–80,000 protein species in agreement with the expected protein product from the 750-amino acid PSM open reading frame. We have not investigated the reason for the two bands seen in the first lane. This may represent proteolytic degradation. Following posttranslational modification using pancreatic canine microsomes, the major band observed is a M, 100,000–110,000 glycosylated protein species consistent with the mature, native PSM antigen.

Detection of PSM Antigen in LNCaP Cell Membranes and Transfected PC-3 Cells. PC-3 cells transfected with the full-length PSM cDNA in the pREP7 expression vector were assayed for expression of PSM mRNA by Northern analysis (data not shown). A clone with high PSM mRNA expression was selected for PSM antigen analysis by Western blotting using the 7E11-C5.3 antibody. In Fig. 3, the M, 100,000 PSM antigen is well expressed in LNCaP membrane fractions and crude cell lysate (Fig. 3, Lanes 1 and 2) as well as in PSM-transfected PC-3 cells (Fig. 3, Lane 4) but not in native PC-3 cells (Fig. 3, Lane 3). This detectable expression in the transfected PC-3 cells (Fig. 3, Lane 4) proves that the previously cloned 2.65-kilobase PSM cDNA encodes the antigen recognized by the 7E11-C5.3 anti-prostate monoclonal antibody and that the antigen is being appropriately glycosylated in the PC-3 cells since the antibody recognizes a carbohydrate-containing epitope on PSM.

PSM mRNA Expression. Expression of PSM mRNA in normal human tissues was analyzed using ribonuclease protection assays. Tissue expression of PSM appears predominantly within the prostate, with very low levels of expression detectable in human brain and salivary gland (Fig. 4). We have also noted on occasion detectable PSM expression in normal human small intestine tissue; however, this mRNA expression is variable depending upon the specific riboprobe used (data not shown). All samples of normal human prostate and human prostatic adenocarcinoma assayed (n = 18) have revealed clearly detectable PSM expression, whereas we have noted generally decreased or absent expression of PSM in tissues exhibiting benign

1808
EXPRESSION OF THE PSM ANTIGEN

Fig. 1. Immunohistochemical detection of PSM antigen expression in prostate cell lines. Top panel reveals uniformly high level of expression in LNCaP cells; middle and lower panels, DU-145 and PC-3 cells, respectively (both negative).

7 days with similar results; maximal down-regulation of PSM mRNA was seen with DHT at 24 h at doses of 2–20 nm (data not shown). A separate RNase protection assay was performed using a human acidic ribosomal phosphoprotein PO probe (15) in the same reaction as the PSM probe. It was noted that the expression of the PO mRNA was not affected by steroid treatment, whereas the changes in PSM expression were identical to those in Fig. 6 (data not shown).

DISCUSSION

In order to better understand the biology of the human prostate in both normal and neoplastic states, we need to enhance our knowledge of the expression and regulation of PSM.

hyperplasia (n = 18; Fig. 5). In human LNCaP tumors grown both orthotopically and s.c. in nude mice, we detected abundant PSM expression with or without the use of Matrigel, which is required for the growth of s.c. implanted LNCaP cells (Fig. 5). Since PSA has been shown to be up-regulated by androgens (14), we investigated the potential androgen responsiveness of PSM which has been noted to increase in expression following hormone deprivation. PSM mRNA expression is distinctly modulated by the presence of steroids in physiological doses (Fig. 6). DHT down-regulated expression by 8–10-fold after 24 h, and testosterone diminished PSM expression by 3–4-fold. Estradiol and progesterone also down-regulated PSM expression in LNCaP cells, perhaps as a result of binding to the mutated androgen receptor known to exist in the LNCaP cell. Overall, PSM expression is highest in the untreated LNCaP cells grown in steroid-depleted media, a situation that we propose simulates the hormone-deprived (castrate) state in vivo. This experiment was repeated at steroid dosages ranging from 2–200 nm and at time points from 6 h to

Fig. 2. Autoradiogram of protein gel revealing products of PSM coupled in vitro transcription/translation. Nonglycosylated PSM polypeptide is seen at approximately M, 75,000–80,000 (Lane 1), and PSM glycoprotein synthesized following the addition of microsomes is seen at M, 100,000–110,000 (Lane 2).

Fig. 3. Western blot analysis detecting PSM expression in transfected non-PSM expressing PC-3 cells. M, 100,000 PSM glycoprotein species is clearly seen in LNCaP membranes (Lane 1), LNCaP crude lysate (Lane 2), and PSM-transfected PC-3 cells (Lane 4) but is undetectable in native PC-3 cells (Lane 3).

Fig. 4. Autoradiogram of ribonuclease protection gel assaying for PSM mRNA expression in normal human tissues. Lane 1, radiolabeled 1-kilobase DNA ladder (Gibco-BRL). Lane 2, undigested probe is 400 nucleotides and expected protected PSM band is 350 nucleotides. Lane 3, rRNA control. A strong signal is seen in human prostate (Lane 11), with very faint but detectable signals seen in human brain (Lane 4) and human salivary gland (Lane 12). Other samples include Lane 5, kidney; Lane 6, liver; Lane 7, lung; Lane 8, mammary gland; Lane 9, pancreas; Lane 10, placenta; Lane 12, salivary gland; Lane 13, skeletal muscle; Lane 14, spleen; and Lane 15, testis.

Downloaded from cancerres.aacrjournals.org on July 21, 2017. © 1994 American Association for Cancer Research.
by studying the various proteins and other features that are unique to this important gland. Previous research has provided two valuable prostatic biomarkers, PAP and PSA, both of which have had a significant impact on the diagnosis, treatment, and management of prostate malignancies. Our present work describing the preliminary characterization of the PSM reveals it to be a gene with many interesting features. PSM is almost entirely prostate specific, as are PAP and PSA, and as such may enable further delineation of the unique functions and behavior of the prostate. The predicted sequence of the PSM protein (3) and its presence in the LNCaP cell membrane as determined by Western blotting and immunohistochemistry indicate that it is an integral membrane protein. Thus, PSM provides an attractive cell surface epitope for antibody-directed diagnostic imaging and cytotoxic targeting modalities. The ability to synthesize the PSM antigen in vitro and to produce tumor xenografts maintaining high levels of PSM expression provides us with a convenient and attractive model system to further study and characterize the regulation and modulation of PSM expression. Also, the high level of PSM expression in the LNCaP cells provides an excellent in vitro model system. Since PSM expression is hormonally responsive to steroids and may be highly expressed in hormone-refractory disease (16), it is imperative to elucidate the potential role of PSM in the evolution of androgen-independent prostate cancer. The detection of PSM mRNA expression in minute quantities in brain, salivary gland, and small intestine warrants further investigation, although these tissues were negative for expression of PSM antigen by immunohistochemistry using the 7E11-C5.3 antibody (17). In all of these tissues, particularly small intestine, we detected mRNA expression using a probe corresponding to a region of the PSM cDNA near the 3' end, whereas we were unable to detect expression when using a 5' end PSM probe. These results may indicate that the PSM mRNA transcript undergoes alternative splicing in different tissues. Previous protein studies have suggested that the 7E11-C5.3 antibody may actually detect two other slightly larger protein species in addition to the M, 100,000 PSM antigen (18). These other protein species can be seen in the LNCaP lysate and membrane samples in Fig. 3. Possible origins of these proteins include alternatively spliced PSM mRNA, other genes distinct from but closely related to PSM, or different posttranslational modifications of the PSM protein. We are currently investigating these possibilities.

ACKNOWLEDGMENTS

We extend special thanks to Dr. Carlos Cordon-Cardo of the MSKCC Immunopathology laboratory for his assistance and advice with the immunohistochemistry; Anna Fitzgerald and Paul Serritella for outstanding laboratory assistance; Dr. Lewis Freedman of MSKCC for his continued wisdom and support of this work; Robert Huryk for his molecular biology expert assistance in this work; and Elizabeth Edwards for her expert work involving tissue and cell culture.

REFERENCES

Expression of the Prostate-specific Membrane Antigen


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/54/7/1807

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.