Advances in Brief

Predictive Performance of a Pharmacodynamic Model for Oral Etoposide

Antonius A. Miller and Elizabeth A. Tolley
Veterans Affairs Medical Center and Department of Medicine [A. A. M.] and Department of Biostatistics and Epidemiology [E. A. T.], University of Tennessee, Memphis, Tennessee 38163

Abstract

The objective of this work was to prospectively validate a pharmacodynamic model for 21-day oral etoposide. The model had been developed in 27 untreated patients with stage IIIB or IV non-small cell lung cancer. Treatment consisted of 50 mg/m²/day, p.o., etoposide for 21 days in combination with 100 mg/m², i.v., cisplatin on day 1 every 28 days for up to 6 courses. Weekly evaluations included etoposide plasma concentrations (Eₚ, μg/ml) before the daily dose and WBC and neutrophil counts (ANC, 10⁹/μl). The relationship between Eₚ and the pretreatment (WBCₚ, ANCₚ) and nadir counts (WBCₙ, ANCₙ) in the first course was described as follows:

\[\text{WBC}_n = 0.35 \left(1 + \text{WBC}_p \times e^{-1.12 \times E_p}\right) \]
\[\text{ANC}_n = 0.32 \left(1 + \text{ANC}_p \times e^{-2.47 \times E_p}\right) \]

The same study criteria were used to enter 26 additional patients, and 21 were evaluable for pharmacodynamics (5 had incomplete data). Predicted nadir counts were not significantly different from observed nadir counts (paired t test, P > 0.4). There were 12 and 7 patients correctly predicted to be above and below, respectively, the clinically important ANCₙ of 0.5 × 10⁹/μl. The model performed reliably, and therapeutic drug monitoring appears warranted in future studies.

Introduction

Current clinical research tries to define the schedule dependency of etoposide. Traditionally, etoposide has been given as short courses of therapy in the order of 3 to 5 days. Based on the hypothesis that sustained inhibition of topoisomerase II may be more efficacious, prolonged treatment regimens have been developed and shown to be well tolerated (1). Such regimens commonly use oral etoposide for 21 days (1—8), but long-term continuous infusion regimens have also been explored (9—12). Hande et al. (13) investigated the bioavailability of etoposide and found that absorption is better at lower oral doses and that wide interpatient variability in bioavailability exists (13). Because of this variability, the relationship between etoposide concentrations and the ensuing hematological toxicity was determined in a population of patients who all received the same dose of oral etoposide (14). Specifically, 27 previously untreated patients with stage IIIB or IV non-small cell lung cancer received 50 mg/m²/day etoposide for 21 days in combination with 100 mg/m² cisplatin on day 1 (every 28 days for up to 6 courses). Weekly evaluations included etoposide plasma concentrations before the daily dose (trough levels in μg/ml) and WBC³ and neutrophil counts. The relationship between drug concentrations and the pretreatment and nadir counts in the first course were described by the following pharmacodynamic model for which counts were expressed as 10⁹/μl:

\[\text{WBC}_n = 0.35 \left(1 + \text{WBC}_p \times e^{-1.12 \times E_p}\right) \]
\[\text{ANC}_n = 0.32 \left(1 + \text{ANC}_p \times e^{-2.47 \times E_p}\right) \]

The objective of the continuation of this work was to validate the pharmacodynamic model prospectively.

Materials and Methods

Patients and Treatment. Patients with advanced non-small cell lung cancer were treated according to the same protocol on which the pharmacodynamic model was based (14). Eligibility criteria included a histological or cytological diagnosis of non-small cell lung cancer (stage IIIB or IV), measurable or evaluable disease, no prior chemotherapy, age 18—80 years, and performance status 0—2 (Eastern Cooperative Oncology Group criteria). Laboratory criteria for entry on the protocol were WBC ≥4000/μl; hemoglobin, ≥10 g/dl; platelets, ≥100,000/μl; serum creatinine, <2 mg/dl; creatinine clearance, >60 ml/min; blood urea nitrogen, <1.5 × normal; and bilirubin, <1.5 × normal. Treatment consisted of 50 mg/m²/day etoposide orally for 21 days in combination with 100 mg/m² i.v. cisplatin on day 1 every 28 days for up to 6 courses. Weekly plasma samples were obtained to measure etoposide trough concentrations before the morning dose. Etoposide was measured by high-performance liquid chromatography with UV detection (14). Hematological toxicity was assessed weekly in all patients with complete blood counts and differentials. The primary study purpose was to test the predictive performance of the pharmacodynamic model. Secondary end points were toxicity, tumor response, and survival.

Biostatistics. Validation of a prediction model involves testing goodness of fit of the model to data that were not used in model development. The prospective patient sample was drawn from the same population so that no differences in patient characteristics would occur. The aim was to assess how close predicted and actual nadir values were for a prospective patient sample. The deviation of predicted to actual nadir values is the residual. Under the normality assumptions, (a) the expected value of the residuals is 0, and (b) the residuals are not correlated with the predicted values. These assumptions provided the basis for two null hypotheses. The respective alternative hypotheses considered the effects of intrinsic curvature on the residuals: (a) the residuals are biased away from 0, and (b) there is a linear relationship between the residuals and the predicted values. The first hypothesis was tested with a paired t test on the differences between the actual and predicted nadir values. Paired t tests to determine the presence of significant bias were conducted on residuals from both the original pharmacodynamic model and the model for ANCₙ after logarithmic transformation. The second hypothesis was tested by inspecting the residual plots of the residuals against the predicted nadir values and testing for a nonzero Spearman correlation coefficient. In this study, the pharmacodynamic model was validated with two data sets containing values for etoposide plasma concentrations and counts for WBCs and neutrophils (before treatment and nadir counts). The primary data set was obtained from a prospective patient sample and comprised values for the first treatment course only. The secondary data set comprised values from the subsequent courses (i.e., 2—6) from the combined patient sample in the previous and current study. Evaluation of the clinical usefulness of the model was based on correct prediction of grade 4 leukopenia or neutropenia from measured etoposide concentrations. Life-threatening, grade 4 toxicity on WBCs and neutrophils is defined as WBCₙ < 1.0 × 10⁹/μl and ANCₙ < 0.5 × 10⁹/μl (National Cancer Institute, Common Toxicity Criteria). Agreement between actual and predicted...
The dose-limiting toxicity of treatment was neutropenia as reported before (14), and this was described by the pharmacodynamic model. Using the clinically important cutoff point for grade 4 neutropenia, an ANCp of \(0.5 \times 10^3/\mu l\) we correctly predicted that 12 and 7 patients had values above and below this value, respectively (Table 2). Measured as a \(\kappa\) statistic, the concordance between actual and predicted grade 4 neutropenia was 0.8 (\(P < 0.03\)) which indicates excellent agreement (17). Expressed another way, characteristics of the model were not correlated (\(r = -0.06; P > 0.9\)). The residuals and ANCn were not correlated; thus, the correlation detected above was an effect of intrinsic curvature related to the nonlinear form of the model (15).

The overall objective response rate in the 58 patients was 38% (95% CI, 26—50%), but the survival was poor (Table 1). The patient with the longest survival time in the group for model validation developed refractory anemia with excess blasts associated with partial loss of the long arm of chromosome 7 which occurred 20 months after chemotherapy.

Table 2 shows the etoposide concentrations and the observed and predicted counts for 21 patients with complete pharmacodynamic data. The nadir counts for WBC and ANC that were predicted by the pharmacodynamic model were not significantly different from observed nadir counts (paired \(t\) test, \(P > 0.4\)). The SD of the residuals was \(1.05 \times 10^3/\mu l\) for WBC and \(0.59 \times 10^3/\mu l\) for ANC, and this is a measure of precision of the model (18). The deviations of observed and predicted nadir counts (residuals) were compared to the observed nadir counts. The residuals and WBCp counts were not correlated (\(r = -0.06; P > 0.9\)). The residuals and ANCp were correlated (\(r = 0.49; P < 0.03\)) in that the residuals were higher for high ANCn (low etoposide concentrations) compared to low ANCn (high etoposide concentrations). If a logarithmic transformation for the ANC is used, the linearized model is:

\[
\ln(\text{ANC}_n) = -0.11 + 0.24 \ln(\text{ANC}_p) + 1.66 E^*_n
\]

Figure 1 shows the relationship between etoposide concentrations and ANCp. Based on the linearized model, the residuals and ANCn were not correlated; thus, the correlation detected above was an effect of intrinsic curvature related to the nonlinear form of the model (15).

Results and Discussion

As reviewed by Mick and Ratain (18), the most preferable means to test the predictive performance of a model is to validate the model on an independent set of data. This approach was followed. The pharmacodynamic model was based on a group of 32 patients (14). In a subsequent group of 26 patients the model was validated prospectively (Table 1). No significant differences were apparent in the patient characteristics between the original and the prospective sample. The overall objective response rate in the 58 patients was 38% (95% CI, 26—50%), but the survival was poor (Table 1). The patient with the longest survival time in the group for model validation developed refractory anemia with excess blasts associated with partial loss of the long arm of chromosome 7 which occurred 20 months after chemotherapy.

Table 2 shows the etoposide concentrations and the observed and predicted counts for 21 patients with complete pharmacodynamic data. The nadir counts for WBC and ANC that were predicted by the pharmacodynamic model were not significantly different from observed nadir counts (paired \(t\) test, \(P > 0.4\)). The SD of the residuals was \(1.05 \times 10^3/\mu l\) for WBC and \(0.59 \times 10^3/\mu l\) for ANC, and this is a measure of precision of the model (18). The deviations of observed and predicted nadir counts (residuals) were compared to the observed nadir counts. The residuals and WBCp counts were not correlated (\(r = -0.06; P > 0.9\)). The residuals and ANCp were correlated (\(r = 0.49; P < 0.03\)) in that the residuals were higher for high ANCn (low etoposide concentrations) compared to low ANCn (high etoposide concentrations). If a logarithmic transformation for the ANC is used, the linearized model is:

\[
\ln(\text{ANC}_n) = -0.11 + 0.24 \ln(\text{ANC}_p) + 1.66 E^*_n
\]

Figure 1 shows the relationship between etoposide concentrations and ANCp. Based on the linearized model, the residuals and ANCn were not correlated; thus, the correlation detected above was an effect of intrinsic curvature related to the nonlinear form of the model (15).

The dose-limiting toxicity of treatment was neutropenia as reported before (14), and this was described by the pharmacodynamic model. Using the clinically important cutoff point for grade 4 neutropenia, an ANCp of \(0.5 \times 10^3/\mu l\) we correctly predicted that 12 and 7 patients had values above and below this value, respectively (Table 2). Measured as a \(\kappa\) statistic, the concordance between actual and predicted grade 4 neutropenia was 0.8 (\(P < 0.03\)) which indicates excellent agreement (17). Expressed another way, characteristics of the model were 78% for sensitivity (exact 95% CI, 40—97%), 100% for speci-
ficity (exact lower one-sided 95% CI, 83%), 100% for positive predictive value (exact lower one-sided 95% CI, 72%), and 86% for negative predictive value (exact 95% CI, 57–98%). In 2 patients, ANC < 0.5 x 10^3/µL was not predicted (Table 2, patients 7 and 13). Patient 7 had the lowest albumin concentration of the group (2.4 g/dl), and patient 13 had a pretreatment performance status of 2. Although performance status and albumin concentration were not found to be confounding variables during model development (14), their contribution was evaluated again, and neither improved the predictive performance of the model. Performance status and albumin concentration were not related to each other (P > 0.3), to etoposide concentration (P > 0.6), or hematological toxicity (P > 0.4).

Since it has long been recognized that the ANC in healthy white Americans is lower than in black Americans (19, 20), racial differences were evaluated in the combined sample including all patients. The ANC_p was significantly (P < 0.03) lower for black males than for white males with means of 6.0 and 8.1 x 10^3/µL, respectively. However, the ANC_n was not significantly different in black versus white males (P > 0.2). In addition, no significant difference was observed for ANC_p or ANC_n in females (P > 0.2), and no significant differences for ANC_p (P < 0.07) or ANC_n (P > 0.3) were observed for males versus females. The etoposide concentrations were not significantly different in whites versus blacks or males versus females (P > 0.3).

Figure 1 shows the relationship between ANC_n and etoposide concentrations as a two-dimensional graph with a horizontal line at ANC_n = 0.5 x 10^3/µL. The model, however, is three-dimensional with ANC_n as the third variable. Whether grade 4 toxicity develops depends not only on the etoposide concentration but also on ANC_n. The higher the pretreatment count, the higher the etoposide concentration that is tolerated. Table 3 lists etoposide concentrations that, given specific pretreatment counts, can be expected to lead to grade 4 toxicity after the first treatment course. For instance, grade 4 neutropenia may be expected with a relatively low E_p of 0.75 µg/ml if the ANC_n is only 1.7 x 10^3/µL. On the other hand, it takes a higher E_p of 1.14 µg/ml to produce grade 4 neutropenia if the ANC_n is 10.1 x 10^3/µL. The etoposide concentration that, if exceeded, was associated with grade 4 neutropenia in 88% of all patients (previous and current study) is 1.00 µg/ml. A patient with an etoposide concentration ≥ 1.0 µg/ml was almost four times as likely (relative risk, 3.9; 95% CI, 2.1 to 7.3) to develop grade 4 neutropenia as a patient with a concentration < 1.0 µg/ml.

In conclusion, the model performed reliably. Although the pretreatment ANC was lower for black than for white males, the nadir counts were not significantly different, and the model predicted ANC_n without significant difference for race. Therapeutic drug monitoring is the objective of an ongoing study.

References

ETOPOSIDE PHARMACODYNAMIC MODEL

Predictive Performance of a Pharmacodynamic Model for Oral Etoposide

Antonius A. Miller and Elizabeth A. Tolley

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/54/8/2080

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.