Loss of Heterozygosity at 11p15 in Malignant Glioma

Yukihiko Sonoda, Masayoshi Iizuka, Jun Yasuda, Reiko Makino, Tetsuya Ono, Takamasa Kayama, Takashi Yoshimoto, and Takao Sekiya

Oncogene Division, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo 104 [Y. S., M. I., J. Y., R. M., T. S.], and Departments of Neurosurgery [T. S., T. K., T. Y.] and Radiation Research [T. O.], Tohoku University School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980, Japan

ABSTRACT

Deletions of loci on chromosome 11p have been found frequently in several malignant tumors including gliomas, suggesting the presence of tumor suppressor genes. We analyzed 38 gliomas (26 malignant gliomas (grades III and IV) and 12 less malignant gliomas (grades I and II)) for loss of heterozygosity using microsatellite sequences on 11p as polymorphic markers. Loss of heterozygosity was found in 8 of 26 malignant gliomas (31%) but not in the less malignant gliomas. In the region with loss of heterozygosity, loci on 11p15.5-pter were commonly deleted. Our results suggest that a putative tumor suppressor gene involved in malignant progression of gliomas is located in an approximately 21-cM region on 11p15.5-pter.

INTRODUCTION

Gliomas are the most common malignant disorders of the central nervous system and are divided into four stages according to the WHO classification scheme (1). Less malignant gliomas are defined as grades I and II, while grade III and IV gliomas are malignant. Cytogenetic and molecular genetic studies have drawn attention to the loss of specific chromosomal regions in gliomas, suggesting the presence of tumor suppressor genes. Studies of LOH3 in gliomas have suggested the presence of tumor suppressor genes on chromosomes 9p, 10p, 10q, 11p, 13q, 17p, 19q, and 22q (2–4). However, only the p53 gene on 17p (5) and the MTS1/pl6 and MTS2/pl5 genes on 9p (6, 7) have been identified as the responsible genes. To isolate putative glioma suppressor genes on the remaining chromosomes, narrowing down of a commonly deleted region has been attempted (8).

Regions on 11p are of particular interest since 11p loci are frequently deleted in several cancers, including glioma (9–13). In this study, we constructed a deletion map of 11p in glioma using 18 polymorphic markers.

MATERIALS AND METHODS

Human Tissue Samples. All glioma samples were obtained surgically. The tumors were classified according to the WHO brain tumor scheme. Gliomas examined in this study consisted of one ependymoma (grade I), 10 astrocytomas (grade II), 2 oligodendrogliomas (grade II), 12 anaplastic astrocytomas (grade III), 3 anaplastic ependymomas (grade III), and 11 glioblastomas (grade IV). Resected tumors were immediately frozen in liquid nitrogen and stored at −70°C until analysis. Control DNA for each tumor was obtained from fresh tumor tissue and stored at −70°C until analysis. Control DNA for each tumor was obtained from fresh tumor tissue and stored at −70°C until analysis.

PCR-Analysis of Microsatellite Markers. The polymorphic markers examined are listed in Table 1. Primers with which to amplify marker DNAs were synthesized according to the reported nucleotide sequences (14–20). For the D11S988 locus, the nucleotide sequence was obtained from a database.

RESULTS

The frequency of LOH detected by analysis of polymorphic markers is summarized in Table 1. Nine of 26 malignant gliomas (35%) showed LOH at least one locus on chromosome 11, but none of the less malignant types had LOH at any chromosome 11 locus examined.

Representative results of the LOH analysis are shown in Fig. 1. For example, a comparison of cancerous and normal DNA from patient 13 revealed LOH at the D11S1318, D11S988, D11S1245, and D11S1256 loci. Although the signal for the D11S922 locus of this patient was not informative, the results together with those of other loci indicated the total loss of chromosome 11. LOHs at loci on chromosome 11 in 9 malignant gliomas including tumor 13 are summarized in Fig. 2. The regions on the short arm were lost in these tumors. The only exception was tumor 20, which had LOH at the locus on 11q23, but it retained heterozygosity at all loci on 11p analyzed. Tumor 25 showed LOH at all informative loci on 11p but retained heterozygosity at loci on 11q, indicating the loss of an entire short arm. In tumors 1, 8, 15, 18, 23, and 24, LOH was found only in the telomeric portion of 11p. In the eight tumors with LOH at the 11p loci, the region of 11p15 indexed by two arrows was commonly deleted. Based on the information available to the markers, the region commonly deleted from the D11S988 locus to the pter could be about 21 cm (22, 23).

Microsatellite instability was not detected at any loci on chromosome 11 examined.

DISCUSSION

In glioma, the most frequently reported genetic alterations are mutations or deletions of the p53, p16/MTS1, and p15/MTS2 genes, LOH at chromosomes 17p and 10; and amplification and rearrangement of the epidermal growth factor receptor (EGFR) gene (2, 3). The p53 gene is mutated in gliomas of all grades of malignancy (2). Thus, alterations of the p53 gene may play a role in early glioma formation.

LOH on chromosome 10 has not been found in gliomas with a low grade of malignancy. On the other hand, allelic losses on chromosome 10 have been detected frequently in malignant gliomas, especially in grade IV tumors, suggesting that putative tumor suppressor genes on the chromosome are involved in progression of tumors to grade IV. The amplification and rearrangement of the EGFR gene in glioblastomas might be aberrations in a late stage of tumorigenesis, because these were found in tumors with LOH on chromosome 10. Other genetic changes, such as deletions of regions on chromosomes 9p

1 Cancer Research 55, 2166-2168, May 15, 1995

2 To whom requests for reprints should be addressed.

Received 2/24/95; accepted 3/20/95.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported in part by a Grant-in-Aid for the 2nd Comprehensive 10-Year Strategy for Cancer Control and a Grant for Research on Aging and Health, both from the Ministry of Health and Welfare of Japan.

2 The abbreviation used is: LOH, loss of heterozygosity.
Allelic loss at 11p15 in gliomas

(p16/MTS1 and p15/MTS2), 11p, 13q, 19q, and 22, may also play a role in the formation of some portion of glioblastomas (3, 4, 8, 10).

In this study, we detected a frequent LOH at loci on chromosome 11p only in malignant gliomas. There was no difference in the frequency in gliomas between grades III and IV. This suggests that the putative tumor suppressor gene on chromosome 11p plays an important role in the progression of gliomas to grade III.

Fults et al. (10) have found LOH in 26% of malignant astrocytomas and in 27% of primitive neuroectodermal tumors and suggested that a region on 11p14–pter was commonly deleted. Our results indicated that the region commonly deleted in malignant gliomas is distal to the marker D11S988. This region overlaps that reported, and we narrowed it down to about 21 cM. These results indicated that a putative glioma tumor suppressor gene(s) is located on 11p15.5–pter. Loci are frequently deleted from 11p15 in other human neoplasias (9), suggesting that a tumor suppressor gene(s) is involved in many types of cancer.

Tumors 13 and 20 showed LOH at 11q23. To our knowledge, LOH at 11q has not been found in gliomas. In tumor 20, a limited region of 11q was deleted, whereas tumor 13 has completely lost chromosome 11. Recently, deletions of loci on 11q22-24 have been found in other cancers such as breast and colorectal carcinomas (24, 25). These findings suggest the presence of a tumor suppressor gene in this region.

Acknowledgments

The authors thank Drs. Shinji Ueno and Toshihiro Kumabe for providing specimens and technical advice.

References


Table 1. LOH at loci on chromosome 11 in human gliomas

<table>
<thead>
<tr>
<th>Locus symbol</th>
<th>Location</th>
<th>Repeating sequence</th>
<th>Less malignant glioma (grade I and II)</th>
<th>Malignant glioma (grade III and IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRAS</td>
<td>11p15.5</td>
<td>GGGCCT</td>
<td>0/3 (0)</td>
<td>2/11 (18)</td>
</tr>
<tr>
<td>D11S1363</td>
<td>11p15.5</td>
<td>CA</td>
<td>0/4 (0)</td>
<td>5/9 (56)</td>
</tr>
<tr>
<td>D11S922</td>
<td>11p15.5</td>
<td>CA</td>
<td>0/6 (0)</td>
<td>7/24 (29)</td>
</tr>
<tr>
<td>IGF2</td>
<td>11p15.5</td>
<td>CA</td>
<td>0/6 (0)</td>
<td>4/15 (27)</td>
</tr>
<tr>
<td>TH</td>
<td>11p15.5</td>
<td>TCTG</td>
<td>0/7 (0)</td>
<td>4/20 (20)</td>
</tr>
<tr>
<td>D11S988</td>
<td>11p15.5</td>
<td>CA</td>
<td>0/8 (0)</td>
<td>6/20 (30)</td>
</tr>
<tr>
<td>D11S860</td>
<td>11p15.4-5</td>
<td>CA</td>
<td>0/9 (0)</td>
<td>5/21 (24)</td>
</tr>
<tr>
<td>D11S860</td>
<td>11p15.4</td>
<td>CA</td>
<td>0/3 (0)</td>
<td>3/10 (30)</td>
</tr>
<tr>
<td>HBB</td>
<td>11p15.4</td>
<td>CA</td>
<td>0/7 (0)</td>
<td>5/20 (25)</td>
</tr>
<tr>
<td>D11S250</td>
<td>11p15.2-3</td>
<td>CA</td>
<td>0/10 (0)</td>
<td>5/22 (23)</td>
</tr>
<tr>
<td>D11S245</td>
<td>11p15.1</td>
<td>CA</td>
<td>0/8 (0)</td>
<td>3/22 (14)</td>
</tr>
<tr>
<td>D11S246</td>
<td>11p14</td>
<td>CA</td>
<td>0/8 (0)</td>
<td>2/19 (11)</td>
</tr>
<tr>
<td>D11S252</td>
<td>11p11.2-12</td>
<td>CA</td>
<td>0/13 (0)</td>
<td>2/23 (9)</td>
</tr>
<tr>
<td>D11S261</td>
<td>11q13.4-21</td>
<td>CA</td>
<td>0/5 (0)</td>
<td>0/15 (0)</td>
</tr>
<tr>
<td>D11S363</td>
<td>11q23</td>
<td>CA</td>
<td>0/13 (0)</td>
<td>1/14 (7)</td>
</tr>
<tr>
<td>D11S256</td>
<td>11q23</td>
<td>CA</td>
<td>0/13 (0)</td>
<td>2/24 (8)</td>
</tr>
<tr>
<td>D11S939</td>
<td>11q23</td>
<td>CA</td>
<td>0/13 (0)</td>
<td>1/14 (7)</td>
</tr>
<tr>
<td>D11S263</td>
<td>11q23.2-24</td>
<td>CA</td>
<td>0/10 (0)</td>
<td>1/20 (5)</td>
</tr>
</tbody>
</table>

* Numbers in parentheses, percentage.

* A polymorphic single-base substitution was detected by single-strand conformation polymorphism analysis.


Loss of Heterozygosity at 11p15 in Malignant Glioma

Yukihiko Sonoda, Masayoshi Iizuka, Jun Yasuda, et al.