Effects of Estrogen on Apoptotic Pathways in Human Breast Cancer Cell Line MCF-7

Thomas T. Y. Wang¹ and James M. Phang

Laboratory of Nutritional and Molecular Regulation, National Cancer Institute–Frederick Cancer Research and Development Center, NIH, Frederick, Maryland 21702-1201

Abstract

We utilized a reverse transcription-PCR method to examine the effect of estrogen on the expression of mRNA for Bcl-2 and Bax, two modulatory proteins in the apoptotic pathway, in human breast cancer cell line MCF-7. We found that the bcl-2 mRNA levels in the cells exposed to 17ß-estradiol were higher than those of control cells. Although the relative bax mRNA levels remained unchanged, the changes in bcl-2 mRNA level occurred in a time- and concentration-dependent fashion. In addition, pretreatment with 17ß-estradiol protected MCF-7 cells from apoptosis. Our study provides evidence that responses of breast epithelial cells toward a steroid sex hormone involve regulation of the apoptotic pathway.

Introduction

Apoptosis (programmed cell death) is a normal physiological phenomenon that can be observed in various tissues. Cells undergoing apoptosis are characterized by distinct biochemical and morphological changes (1). It is known that apoptosis plays a role in differentiation processes, such as formation of digits during embryogenesis and selection of lymphocyte populations. In addition, perturbation of the apoptotic pathway has been found to be associated with tumorigenesis (2, 3). The protein Bcl-2 has been shown to be a component of the apoptotic pathway. Overproduction of Bcl-2 protein resulted in blockage of apoptosis and increased survival upon external “death” stimuli (4). The antiapoptotic activity of Bcl-2 is thought to be modulated by the protein Bax, and it has been proposed that the Bcl-2:Bax protein rate may determine whether a cell would undergo apoptosis (5, 6). Breast epithelium undergoes cyclic apoptosis and fluctuation in Bcl-2 protein level during the menstrual cycle (7). Clinical studies showed a relationship between estrogen receptor expression and Bcl-2 protein level (8). Thus, steroid sex hormones such as estrogen may regulate Bcl-2, Bax levels, and, consequently, apoptosis. Exposure to estrogen has been associated with increased incidence of breast cancer (9); hence, a better understanding of its role in apoptosis could be important in the prevention and treatment of breast cancer. In the present study, we utilized estrogen receptor-positive human breast cancer MCF-7 cells as a model to address two questions: (a) Is bcl-2/bax mRNA expression regulated via estrogen’s action? and (b) Does estrogen regulate the apoptotic pathways?

Materials and Methods

Cell Culture and Total RNA Isolation. MCF-7 cells were maintained in medium A [RPMI 1640 with 2 mM L-glutamine, 3.5 ng/ml hydrocortisone, 1.5 ng/ml insulin, 100 units/ml penicillin, and 100 µg/ml streptomycin] with 5% fetal bovine serum in 75-cm² flasks (Falcon, Lincoln Park, NJ) and grown in the presence of 5% CO₂ in air at 37°C. One week before initiation of experiments, cells were switched to medium A supplemented with 5% charcoal dextran-treated fetal bovine serum. Cells were grown to confluence and passaged with the use of trypsin-EDTA. Viable cells were quantitated by trypan blue exclusion. One day before treatment, cells were plated in medium B [phenol red-free RPMI 1640 containing 2 mM glutamine, 100 units/ml penicillin, 100 µg/ml streptomycin, and 5% charcoal dextran-treated fetal bovine serum]. Total RNA was isolated from MCF-7 cells grown in 6-well Costar plates (5 × 10⁵ cells/well in 3 ml of medium B) by a method described previously (10).

Quantitation of bcl-2 and bax mRNA Levels. We utilized a competitive reverse transcription-PCR method to quantify bcl-2 and bax mRNA levels (11). The procedure used one set of primers to amplify both target cDNA and an externally added MIMIC of known concentration. MIMICs for both bcl-2 and bax quantitation were constructed with the use of the PCR-MIMIC construction kit (Clontech, Palo Alto, CA) following the manufacturer’s directions. The primer pairs used for amplification of bcl-2 and bax mRNA and construction of MIMIC fragments are listed in Table 1. We routinely used 1 µg of RNA for cDNA synthesis (Clontech). After first-strand cDNA synthesis reaction, the cDNA was made into 100 µl final volume, and 4 µl were used for PCR. A typical PCR consisted of 0.2 µM dNTP, 2 µM MIMIC, 4 µM cDNA, 0.2 µM of each primer, PCR buffer, and Taq polymerase. The PCR profile was 95°C for 45 s, 65°C for 45 s, and 72°C for 2 min for 35 cycles, followed by 72°C for 7 min. After PCR, aliquots of the reaction were analyzed on 1.8% agarose gel (0.50 µg/ml ethidium bromide). The amount of mRNA was quantitated by comparing relative intensities of the amplified MIMIC and specific message bands. All results were normalized against G3PDH mRNA quantitated with the use of identical PCR conditions. Results are expressed as level of expression relative to G3PDH. The primer pairs and competitor for G3PDH were purchased from Clontech.

Apoptotic Death Assay. We used DNA fragmentation as the criteria for apoptotic cell death. DNA fragmentation was measured with the use of the cell death ELISA (Boehringer Mannheim, Indianapolis, IN). MCF-7 cells (1 × 10⁶ cell) were plated in each well of 24-well plates. After appropriate treatment, the cells were washed once with PBS, and 0.5 ml lysis buffer was added. After a 30-min incubation, the supernatant was recovered and assayed for DNA fragments according to manufacturer’s protocol. Each treatment was performed in triplicate. Additional plates identically treated as above were analyzed for cell number with the use of the sulforhodamine assay (12). The A₅₇₀ obtained from the DNA fragmentation assay was then normalized for cell number, and the results are expressed relative to untreated control.

Results

Effects of Estrogen on bcl-2 and bax mRNA Level. To examine the effects of estrogen on the apoptotic pathway, we used the human breast cancer cell line MCF-7 and monitored mRNA expression of apoptosis-related proteins Bcl-2 and Bax. The MCF-7 cells are a good model because they expressed estrogen receptor and, as in our initial study, also expressed both bcl-2 and bax mRNA (data not shown). A competitive reverse transcription-PCR protocol was used to determine bcl-2 and bax mRNA level.

References

Received 3/20/95; accepted 5/5/95.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

To whom requests for reprints should be addressed, Laboratory of Nutritional and Molecular Regulation, Building 434/2, National Cancer Institute–Frederick Cancer Research and Development Center, P.O. Box B, Frederick, MD 21702-1201.

1 The abbreviations used are: MIMIC, competitor DNA fragment; G3PDH, glyceraldehyde 3-phosphate dehydrogenase.
17β-estradiol, and the relative level of bcl-2 and bax mRNA was quantitated. Shown in Fig. 1A is a representative gel for analysis of PCR products. We found that treatment with 17β-estradiol resulted in an increase in bcl-2 mRNA level, but produced no change in bax mRNA level (Fig. 1B). Observing a change in relative bcl-2 mRNA level upon treatment with 17β-estradiol, we then further characterized this effect. We found that the increase in bcl-2 mRNA level with 17β-estradiol was time dependent (Fig. 2A) for up to 48 h. In addition, the increase in bcl-2 mRNA level accompanied the increase in estradiol concentration (Fig. 2B). The effect of 17β-estradiol on bcl-2 mRNA levels was seen at estradiol concentrations as low as 10⁻¹¹ M and plateaued at 10⁻¹⁰ M.

Effect of Tamoxifen on Estrogen-stimulated bcl-2 mRNA Expression. To determine whether the increase in bcl-2 mRNA was due to specific interaction between estradiol and estrogen receptor, we examined the effect of tamoxifen, an antiestrogen, on estradiol-stimulated bcl-2 expression. We found that addition of tamoxifen (10⁻⁶ M) completely inhibited the stimulatory effects of estradiol, thus supporting the possibility that increased bcl-2 mRNA levels involve the interaction of estradiol with the estrogen receptor.

Effects of Estrogen on Apoptosis. The observation that estradiol increases bcl-2 mRNA level would suggest that estradiol may inhibit apoptosis.
Our in vitro study using MCF-7 cells as a model provides direct evidence that steroid sex hormones such as estrogen can inhibit apoptosis by increasing the production of Bcl-2, an antiapoptotic protein. Our finding is consistent with clinical studies that correlated detection of Bcl-2 protein with expression of estrogen receptor (7, 8). These findings also support the hypothesis (7) that modulation of apoptosis may be a mechanism by which estrogen influences breast cancer risk. In addition, additional characterization of the role of estrogen in apoptotic pathways could lead to design of antitumor drug(s) that target this pathway.

The differential regulation of bcl-2 and bax mRNA by estrogen is interesting. One may hypothesize that, at least in the case of breast epithelial cells, cell survival depends on external mitogenic signal. The survival of cell is enhanced by an increase in the production of antiapoptotic protein Bcl-2 to counteract death signal by Bax.

References

Effects of Estrogen on Apoptotic Pathways in Human Breast Cancer Cell Line MCF-7

Thomas T. Y. Wang and James M. Phang

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/55/12/2487

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.