Advances in Brief

Radiation-induced Apoptosis of Ewing’s Sarcoma Cells: DNA Fragmentation and Proteolysis of Poly(ADP-ribose) Polymerase

Viatcheslav A. Soldatenkov, Sarada Prasad, Vicente Notario, and Anatoly Dritschilo

Department of Radiation Medicine, Division of Radiation Research, Georgetown University Medical Center, Washington, DC 20007

Abstract

Ewing’s sarcoma (ES) cells express high levels of poly(ADP-ribose) polymerase (PADPRP) and are responsive to killing by ionizing radiation. We have determined that ionizing radiation induced a pronounced but reversible G2-M phase cell cycle arrest that was maximum by 24 h after exposure. Following the release from this block, floating cells began to appear. These floating cells were shown to be apoptotic by flow cytometric and DNA fragmentation analyses. We found that apoptosis is a significant component of radiation-induced death in ES cells and that this is accompanied in conjunction with proteolytic cleavage of PADPRP. Two fragments of M, 25,000 and M, 29,000 containing the PADPRP DNA-binding domain were identified in floating (apoptotic) cells, whereas only the full-length M, 116,000 native protein was detected in adherent cells that retained DNA intact. These data are consistent with PADPRP cleavage being an early step in the apoptotic cascade of biochemical events in ES cells after ionizing radiation exposure.

Introduction

ES3 is a bone tumor of childhood that is characterized by the presence of poorly differentiated round cells that are believed to be of neuroectodermal origin (1). Treatment of ES patients generally includes a combined modality approach with radiation therapy and chemotherapy (2). Clinically, the tumors are responsive to such treatment; however, the overall cure rate is poor due to frequent presentation with metastatic disease (3, 4). We have reported previously that ES cells express elevated levels of PADPRP (EC 2.4.2.30), an enzyme which catalyzes the transfer of the ADP-ribose moiety from NAD to nuclear proteins (5). Furthermore, treatment of cells with the PADPRP inhibitor 3-aminobenzamide resulted in sensitization of ES cells to killing by ionizing radiation (6). We have attributed the observed radiation sensitivity of ES cells to overexpression and enhanced PADPRP activity in response to DNA damage, although the underlying mechanism remains to be elucidated.

Exposure of cells to lethal doses of DNA-damaging agents, including ionizing radiation, results in their necrotic or apoptotic death (7, 8). It has been demonstrated recently that proteolytic cleavage of PADPRP into fragments of M, 25,000 and M, 85,000 is an early marker of chemotherapy-induced apoptosis (9). Cleavage of PADPRP to a M, 85,000 fragment has also been found to be a characteristic feature of both Fas- and tumor necrosis factor-induced apoptosis of mammalian cells (10). Therefore, we asked whether apoptosis is a significant component of radiation-induced death in ES cells and whether the specific proteolysis of PADPRP is an integral component of the radiation-induced cell death pathway. The data presented in this report show that ionizing radiation-induced apoptosis of ES cells is accompanied by the proteolytic cleavage of PADPRP.

Materials and Methods

Cells and Culture Conditions. The ES cell line A4573 was kindly provided by Dr. Timothy Kinsella of the University of Wisconsin Medical School (Madison, WI). Cells were cultured in Eagle’s minimal essential medium (GIBCO) supplemented with 10% fetal bovine serum, 1% L-glutamine, 100 units/ml penicillin, and 100 µg/ml streptomycin at 37°C in an atmosphere of 5% CO2 in air.

Irradiation. All irradiations were performed at room temperature, in air, using a 137Cs source in a "JL Shepard MARK I" laboratory irradiator at a dose rate of 2.37 Gy/min.

FACS Analysis. Cells (1–2 x 10^6) harvested at various times after irradiation were washed with PBS and then vortexed gently while 95% ethanol was added slowly to a final concentration of 80%. The fixed cells were stored at -20°C. Prior to analysis by FACS, cells were centrifuged, washed with PBS once, and incubated at 37°C for 30 min, followed by staining with propidium iodide (50 µg/ml) in PBS. The cell cycle phase distribution was determined using a FACS Star Plus flow cytometer (Becton Dickinson FACS System) and "ModFit" DNA analysis modeling software. Results were presented as the number of cells relative to the amount of DNA as indicated by the intensity of fluorescence. The percentage of hypodiploid (apoptotic) cells, which appeared in the cell cycle distribution as cells with DNA content less than G1, was assessed simultaneously with cell cycle analysis.

DNA Gel Electrophoresis. To assess DNA integrity, total cellular DNA was prepared as described previously (11). Adherent and floating cells were harvested separately 72 h after irradiation, washed in PBS, and resuspended in lysis buffer (10 mM Tris-HCl (pH 8.0), 5 mM EDTA, 1% SDS, and 50 µg/ml RNase A), followed by incubation for 1 h at 37°C. Cell lysates were treated with proteinase K (100 µg/ml) in the presence of 1 mM NaCl for 3 h at 37°C. DNA was extracted with phenol-chloroform:isoamyl alcohol, precipitated with ethanol, recovered by centrifugation, and resuspended in TE-buffer (10 mM Tris-HCl (pH 7.5) and 1 mM EDTA). DNA preparations were end-labeled with Klenow and [α-32P]dCTP as described (12). Unincorporated nucleotides were removed by three consecutive precipitation cycles with ethanol. Recovered DNA samples were applied onto 2% agarose gels and electrophoresed for 16 h at 1.5 V/cm. Gels were dried at 50°C and exposed to X-ray film.

Western Analysis. Total cellular proteins (50 µg/sample) from control or irradiated cells were resolved on SDS-10% polyacrylamide gels and transferred to Immobilon (Millipore) membranes. PADPRP immunodetection was performed as described previously using a rabbit polyclonal antiserum raised against a synthetic peptide encompassing the first 20 NH2-terminal amino acids of the human PADPRP (13). Equal sample loading was confirmed by reprobing the same blots with a rabbit polyclonal antiserum against glyceraldehyde-3-phosphate dehydrogenase (Trevigen).

Results and Discussion

The cell cycle distribution of ES cells was determined by flow cytometry at various times after irradiation. As depicted in Fig. IA, ionizing radiation caused a pronounced accumulation of cells in G2-M phases, with a concomitant decrease of the percentages of cells in G1 and S phases. The fraction of cells in the G2-M phase increased to 55% of the total population by 24 h after radiation exposure. The

Received 7/6/95; accepted 8/18/95.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by Grant CA 58986 from the NIH.

2 To whom requests for reprints should be addressed, at Department of Radiation Medicine, Georgetown University Medical Center, The Research Building, E-207, 3970 Reservoir Road, Washington, DC 20007.

3 The abbreviations used are: ES, Ewing’s sarcoma; PADPRP, poly(ADP-ribose) polymerase; FACS, fluorescence-activated cell sorting.

4240
The percentage of apoptotic cells (D) was determined by FACS analysis as described in "Materials and Methods." Points, the means of duplicate experiments; bars, SE.

Fig. 2 represents the dot-plots of the quantitative DNA analyses in irradiated ES cells. The DNA histograms on the left show that the cells with fractional DNA content map below the cells in G1, and these regions were considered to represent the population of apoptotic cells. Fig. 2A shows the relative distribution of cells with haploid and diploid DNA contents in logarithmically growing ES cells. The numbers of hypodiploid cells in the total population of irradiated cells (Fig. 2C) are significantly higher compared to those in control, unirradiated cells (Fig. 2A). At the same time, when adherent (Fig. 2B) and floating (Fig. 2D) populations of irradiated cells were analyzed independently, approximately 60% of floating cells were found to be apoptotic, while only 5% of the cells remaining attached after irradiation had a fractional DNA content.

DNA fragmentation and laddering upon electrophoresis is frequently associated with apoptotic process (7, 8, 11, 12). To confirm that apoptosis was actually ongoing in irradiated ES cells, DNA fragmentation analyses were carried out in both adherent and floating cells (Fig. 3a). Agarose gel electrophoresis of DNA isolated from

Fig. 3. DNA fragmentation and specific cleavage of PADPRP in apoptotic ES cells. Adherent (A) and floating (F) cells were collected separately 48 or 72 h after irradiation at 7 Gy. Control, unirradiated cultures (U) contained less than 3% of floating cells and were analyzed in bulk. a, agarose gel electrophoresis of DNA. A typical "ladder" pattern indicates an internucleosomal DNA fragmentation in floating cells after irradiation. No DNA fragmentation was detected in control, unirradiated cells (data not shown). The migration of molecular size markers (kilobase pairs) is indicated, b, immunodetection of PADPRP in ES cells after irradiation. Total cellular proteins (50 μg) were resolved by SDS-10% PAGE, transferred to Immobilon-P membranes, and subjected to Western blotting with polyclonal antiserum raised against a synthetic peptide encompassing the 20 NH2-terminal amino acids of human PADPRP. Arrowheads on the native M, 116,000 protein and cleavage products of PADPRP recognized by the anti-PADPRP probe. Left, molecular size markers. c, Western blot analysis of the cell lysates used in b with antibody to glyceraldehyde-3-phosphate dehydrogenase for protein loading equivalence. d, schematic representation of the functional domains of PADPRP. The location of the epitopes recognized by the anti-PADPRP antiserum is indicated by triangle at the NH2-terminal end. The fragments of the DNA-binding domain, which appeared in apoptotic cells, are indicated with arrows at the bottom.
floating cells 72 h after irradiation demonstrated a ladder-like pattern; the degraded DNA was present in oligomers that were multiples of approximately 180–200 bp, suggesting internucleosomal cleavage. At the same time, adherent cells retained their high molecular weight DNA intact. This is consistent with the view that loss of viability leads to cell detachment and that accumulation of floating cells may be considered as an indicator of ongoing cell death.

We next analyzed the apoptosis-associated proteolysis of PADPRP in irradiated ES cells. The products of PADPRP cleavage were detected in floating cells (Fig. 3b) over the same time interval as hypodiploid (apoptotic) cells appeared (Fig. 18). Using an antiserum against NH2-terminal end of DNA-binding domain of PADPRP, we detected M, 25,000 and M, 29,000 protein fragments. In the adherent cells, at 48 h after irradiation the M, 116,000 native PADPRP was intact, whereas in the floating cells, there was a decrease in the intensity of the native enzyme giving rise to the cleavage products. It was also evident that by 72 h after irradiation, in the floating cell population the M, 116,000 PADPRP had undergone complete proteolysis. This process appeared to be closely associated with ongoing cell death because no PADPRP degradation was detected in cells remaining attached (Fig. 3b). Based on the intactness of glyceraldehyde-3-phosphate dehydrogenase (Fig. 3c), probed with specific antibody under identical conditions, radiation-induced cleavage of PADPRP seemed to be specific and not related to protein turnover. These data provide support for a potential role of PADPRP proteolysis in radiation-induced apoptosis of ES cells.

Recently, the specific proteolytic cleavage of PADPRP to fragments consisting of a M, 25,000 DNA-binding domain and a M, 85,000 fragment containing mainly its automodification and NAD-binding domains have been detected in human leukemia and breast cancer cells during chemotherapy-induced apoptosis (9). The M, 85,000 fragment of PADPRP has been identified also during Fas- and TNF-induced apoptosis of mammalian cells (10). These data, taken together, imply that specific proteolytic cleavage of PADPRP may be an early event or perhaps a prerequisite for the onset of apoptotic cell death triggered by various effectors. Although the cleavage of PADPRP seems to be rather specific, the nature of the protease(s) responsible for this process remains to be established. A protease activity that shares certain features with the interleukin-ß-converting enzyme (prICE), which has been detected recently in extracts from cells committed to apoptosis (17). This protease has been implicated in the specific proteolysis of PADPRP into fragments of M, 85,000 and M, 25,000 in leukemic cells (9). In our case, the M, 85,000 and M, 29,000 fragments of the DNA-binding domain of PADPRP appeared in ES cells during radiation-induced apoptosis (Fig. 3). The M, 29,000 fragment corresponded in size and location to the shortest NH2-terminal polypeptide obtained by trypsin digestion of PADPRP (18). It should be noted that prICE activity was resistant to cysteine and serine protease inhibitors (17) and appeared to be different from trypsin-like proteases. Such data suggest that several proteolytic enzymes may be responsible for PADPRP cleavage, probably depending on tissue specificity and/or type of the effector triggering apoptosis. Several lines of evidence suggest that proteases act in a cascade of biochemical events resulting in programmed cell death (9, 10, 17, 19–21). However, the pathway(s) of their activation, their possible cross-interactions, the nature of target proteins, and whether these putative targets are intermediate or end points in the apoptotic pathway remain to be elucidated.

One of the possible implications of PADPRP cleavage in the apoptotic cascade results from the proposed “nick-protection” mechanism of polymerase action (22). According to this theory, auto-poly(ADP-ribose)ylation of PADPRP effects its release from DNA strand breaks and allows access for DNA repair enzymes to the lesions (22). Radiation-induced proteolytic cleavage of PADPRP in cells committed to apoptosis may result in accumulation of DNA-binding PADPRP fragments (Fig. 3) and reduced catalytic activity of fragments from detecting DNA and may result in fixation of DNA lesions. Such a mechanism may provide a basis for an additional “check point” to eliminate cells retaining substantial long-lived genomic damage by activation of the apoptotic cascade. Whether this possibility has functional significance remains to be established.

References

Radiation-induced Apoptosis of Ewing's Sarcoma Cells: DNA Fragmentation and Proteolysis of Poly(ADP-ribose) Polymerase

Viatcheslav A. Soldatenkov, Sarada Prasad, Vicente Notario, et al.


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/55/19/4240

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.