Expression of Plasminogen Activators and Plasminogen Activator Inhibitors in Cutaneous Melanomas of Transgenic Melanoma-susceptible Mice

Teunis J. de Vries, Janice L. Kitson, Willys K. Silvers, and Beatrice Mintz
Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111

ABSTRACT

The Tyr-SV40E transgenic mouse model of malignant skin melanoma has been used here to generate melanomas in genetically identical (C57BL/6) mice for analysis of the plasminogen activator (PA) system during tumor development and progression. Twenty-two melanocytic lesions were examined by in situ zymography for PA activity and by immunohistochemistry for concomitant visualization of PA proteins; these lesions encompassed 3 new and 19 primary melanomas ranging from melanotic through mixed tumors to amelanotic tumors. Although urokinase-type plasminogen activator (u-PA) activity was not detected at premalignant stages, it began to appear early in tumorigenesis and became more prominent in later stages of a majority of the tumors. The activity was largely attributable to the endothelium of sprouting capillaries and to a lesser degree to granulocytes, fibroblastic cells, and occasional melanoma cells within tumors. Tissue-type plasminogen activator (t-PA) was undetectable or low in all cases. Of the PA inhibitors (PAI), PAI-1 was expressed specifically in pigment cells. Different levels of transgene expression reliably in the skin grafts and progress to malignancy. Their histopathogenesis strikingly resembles that of human cutaneous melanomas, and they generate regional as well as distant metastases. Because the animals are all of the same standard inbred strain (C57BL/6), tumor progression can be characterized within the context of a constant genetic background. The tumors clearly undergo an orderly series of changes tending toward accelerated growth and diminished pigmentation.

One of the biological parameters of special interest in tumor progression is the increased expression of proteases and their inhibitors in malignant tumors compared with premalignant precursor lesions (6, 7). PAs are a part of a proteolytic system thought to be involved in tumor cell spread. Two PAs, t-PA and u-PA, are known. t-PA is secreted as an active enzyme, whereas u-PA is exported as an inactive proenzyme and is activated upon binding to its receptor, u-PAR. The activity of u-PA and t-PA can be inhibited by two specific plasminogen activator inhibitors, PAI-1 and PAI-2 (reviewed in Refs. 6, 8).

The involvement of the PA system in melanoma metastasis has been inferred from experiments with murine or human melanoma cell lines. Metastasis of B16 mouse melanoma cells after injection into mice was reduced when they were preincubated with anti-u-PA antibodies (9) and was increased when they were transfected with the u-PA gene (10). The expression of u-PA and PAI-1 in human melanoma cell lines was found to be correlated with their capacity for metastasis in nude mice (11). Moreover, the binding of u-PA to u-PAR promoted migration of human melanoma cells in invasion assays in culture (12). The overexpression of PAI-2 inhibited metastasis of the cells in immunodeficient mice (13). These observations are consistent with the expression pattern of the PA system in human cutaneous melanocytic lesions: Plasminogen activators, u-PAR, and the PAIs are absent in premalignant lesions and emerge in the primary malignant melanomas and in metastases (14, 15). Herein, we describe the presence and activity of plasminogen activators and the occurrence of their inhibitors in mouse skin melanomas derived in vivo from melanocytes in Tyr-SV40E transgenic skin grafts.

INTRODUCTION

The melanoma-susceptible transgenic mouse strain introduced in this laboratory (1, 2) affords many possibilities for experimental analysis of mechanisms underlying melanoma progression and metastasis. In the transgene, designated Tyr-SV40E, SV40 oncogenic sequences are under the transcriptional control of the mouse tyrosinase gene promoter; as a result, the transforming sequences are activated specifically in pigment cells. Different levels of transgene expression occur among Tyr-SV40E mouse lines, each of which is composed of lineal descendants from a single egg injected with transgene DNA. Eye melanomas, originating chiefly in the retinal pigment epithelium (3), generally arise before skin melanomas and are fatal at a young age in mice of lines with high transgene expression. To obtain skin melanomas, pieces of skin were grafted from transgenic donors of a high-susceptibility and short-lived line to hosts of a low-susceptibility line in which eye tumors arise late; in this way, the more susceptible skin outlives the donors (4). Melanomas develop reliably in the skin grafts and progress to malignancy. Their histopathogenesis strikingly resembles that of human cutaneous melanomas, and they generate regional as well as distant metastases (5).

MATERIALS AND METHODS

Melanomas. One-cm discs of full-thickness body skin were taken from transgenic line 8 hemizygous donors in most cases (in two cases, from line 9 homozygous donors) and were transplanted to line 12 hemizygous recipients. Mice of these lines have high, moderate, and low transgene expression, respectively (1). In addition, some line 8 grafts were taken from the skin of the snout area, in which the vibrissa follicles are situated. The donor skin was

1 This work was supported by United States Public Health Services Grants CA-42560 (to B. M.), CA-06927 and RR-0539 to the Fox Chase Cancer Center, and an appropriation to the Fox Chase Cancer Center from the Commonwealth of Pennsylvania. T. J. de V. was the recipient of a stipend jointly awarded by the Dutch Cancer Society, The Netherlands Organization for Scientific Research, and the Dutch Society for Cell Biology while on leave from the Department of Pathology, University Hospital, Nijmegen, the Netherlands.

2 Present address: Department of Molecular and Cell Biology, The Wellcome Trust, London, United Kingdom.

3 Visiting Scientist from the University of Pennsylvania, Philadelphia, PA.

4 To whom requests for reprints should be addressed, at Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111.

6 The abbreviations used are: PA, plasminogen activator; t-PA, tissue-type plasminogen activator; u-PA, urokinase-type plasminogen activator; u-PAR, u-PA receptor; PAI, plasminogen activator inhibitor; RT, reverse transcription; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
PLASMINOGEN ACTIVATION IN MOUSE MELANOMA

grafted on the lateral trunk as described (4). Donor ages varied; hosts were young adults. Tumor-bearing animals and controls were killed by cervical dislocation, and tumors and other tissues were dissected in cold PBS.

For in situ studies of the presence and activity of PA proteins, a piece of tissue was blotted to remove excess moisture, embedded in Tissue-Tek (Miles Inc.), and snap frozen in liquid nitrogen. Cryostat sections of the block were stained in hematoxylin and eosin for histological characterization in relation to nearby sections cut at 6 μm for in situ zymography and at 4 μm for immunohistochemistry. The sections for in situ zymography were frozen immediately and stored at −80°C. Sections for immunohistochemistry were air dried overnight and stored at −80°C. For studies of tumor mRNAs by RT-PCR, the tissue was frozen in liquid nitrogen or dry ice and stored at −80°C.

In Situ Zymography. The in situ zymography method was adapted from published procedures (14, 15). Cryostat sections were covered with an overlay mixture containing 2% (w/v) instant nonfat dry milk solution, 0.9% agar (w/v), and 30 μg/ml plasminogen. The dry milk solution was made as an 8% (w/v) stock solution in PBS, heated at 95°C for 30 min, centrifuged briefly at 3 × 10^5 g, and the supernatant was used. The overlay solution was prepared at 55°C; 110 μl were applied on freshly defrosted 6-μm sections and spread evenly under 24 × 32 mm glass coverslips. Slides were incubated at 37°C in a humidified chamber. Development of lysis was monitored for up to 10 h; photographic records were taken at 3, 4.5, 6, and 7.5 h of incubation. Serial dilutions of mouse u-PA and mouse t-PA (reagent #119 and #118, respectively; American Diagnostica Inc., Greenwich, CT) were made in small drops of swine anti-rabbit Ig or with peroxidase-labeled donkey anti-goat Ig for 30 mm, were washed three times for 5 mm in PBS, incubated with peroxidase-labeled anti-human u-PAR and one anti-rat u-PAR polyclonal antibodies were tested to discriminate between the two types of PA activities.

Antibodies. Polyclonal antibodies used against the different components of the plasminogen activation system are listed in Table 1. Antibodies were either against the mouse component or against the rat or human equivalent. Several antibodies have been used previously in immunohistochemistry of mouse lesions (16–19). Human and mouse PAIs are related immunologically (16, 20). Immunohistochemical staining for u-PA, PAI-1, and PAI-2 was tested on tissue sections of fresh-frozen midgestational mouse placenta, and for t-PA on tissue sections of mouse lung. Staining with the two u-PA, the two PAI-1, and the two PAI-2 antibodies compared well with each other in placenta and in melanocytic lesions. In the reagents listed in Table 1, three anti-human u-PAR and one anti-rat u-PAR polyclonal antibodies were tested on placental tissue. They were excluded from additional study because of very variable reactivity with placental tissue, as well as the limited homology between the human and mouse u-PAR (21).

Immunohistochemistry. Air-dried cryostat sections, cut at 4 μm, were fixed for 10 min in acetone. Polyclonal antibodies were added in 1% BSA in PBS for overnight incubation at 4°C in a humidified chamber. The sections were washed three times for 5 min in PBS, incubated with peroxidase-labeled swine anti-rabbit Ig or with peroxidase-labeled donkey anti-goat Ig for 30 min, and washed again three times for 5 min in PBS.

Bound antibodies were visualized with 3-amino-9-ethylcarbazole as a substrate for peroxidase. After being counterstained with Meyer’s hematoxylin, cover slips were mounted with Kaiser’s glycercin (Merck, Darmstadt, Germany). A parallel incubation, in which the first antibody was omitted, served as a negative control.

RT-PCR. To gauge semiquantitatively the specific expression of PA genes at the mRNA level, other examples of transgenic mouse melanomas were analyzed by RT-PCR. This aspect of the study was concerned partly with comparing expression in melanotic versus amelanotic parts of primary tumors; therefore, some of the melanomas were chosen for RT-PCR analysis because they had clearly distinguishable melanotic and amelanotic zones. The two components were separated and cut into fragments of approximately 1 mm^3, and 8–10 pieces of the melanotic or amelanotic phenotype were injected s.c. by trocar into line 12 hemizygous male hosts. After tumors had been obtained, examples were retransplanted s.c. two or more times to verify retention of the melanotic or amelanotic status before samples were collected and stored. Additional cases were chosen from primary or metastatic tumors that appeared to be all-melanotic or all-amelanotic.

Total RNA from each tumor sample intended for RT-PCR was isolated with RNAzol B solution (Cinna/Biotexc, Houston, TX). The procedure for RT-PCR was essentially as described (22). Each amplification cycle was carried out in a programmable thermal controller (MJ Research, Inc.) and included 1 min at 55°C annealing temperature for the primers used; this was repeated for 25 cycles for the PA genes of interest and for 20 cycles for GAPDH, which was used as the loading control.

The amplification products from each reaction were run on a 2% agarose gel (LE agarose; FMC Bioproducts) along with a DNA size marker. The DNA was transferred to nitrocellulose after denaturing and neutralizing and was then fixed to the filter by UV cross-linking. Oligonucleotide probes specific for the amplified region were end labeled with [γ-32P]ATP (DuPont-NEN, Boston, MA) and polynucleotide kinase (BRL, Gaithersburg, MD) to a specific activity of 2 × 10^6 dpm/μg, and filters were hybridized overnight. The optimal hybridization temperature was found to be 50°C for t-PA, 55°C for u-PA, and 40°C for PAI-1 and GAPDH. Filters were washed to remove background. To measure the relative levels of specific transcripts recovered as cDNAs, the filters were placed in an AMBIS radioanalytic imager, and the radioactivity in each band of interest was normalized against that in GAPDH in each sample. The levels of the latter remained relatively constant among samples.

The following sets of primers and probes were based on known oligonucleotide sequence data for mouse t-PA, u-PA, and PAI-1 and for rat GAPDH: t-PA primers, 5'-GGGAGGTTCTCAGAAGGAGGCGCCCGG, 3'-GGTTTTTCTCATAAATCTCATACGGG, and probe, GGCTCCGACCC-ATGTCTCAGAAGGCAGCCGG (23); u-PA primers, 5'-TGCCCAAGGAAATTCAGGAC3'-GCCAATCTGCACATAGCACC, and probe, CT-GGAATGCCGCTGTCTCCTC (24); PAI-1 primers, 5'-CCAAC-GTGCTATGGGCAAGCC, 3'-CGGGGCTACCACTCTCCTC, and probe, CAGCATTTCTTCACTGGTCACCC (25); and GAPDH primers, 5'-GG-GAAGGTCGGTGTCACCC, 3'-GTGAAGACGCCGAAGACTC, and probe, GTTCACGTATGATTCTACCAACCG (26).

RESULTS

Melanocytic Lesions Examined in Situ. For the in situ studies, 22 lesions were examined. Of these, 17 arose in the grafts of transgenic body skin; 2 were classified as nevi, 2 as melanotic tumors, 5 as mixed tumors (in which amelanotic parts were much larger than melanotic ones), and 8 as amelanotic tumors. Five other lesions arose in the grafts of transgenic snout skin; one was classified as a nevus, three as mixed tumors (with substantially larger amelanotic than melanotic parts), and one as an amelanotic tumor (Table 2).

As noted previously (5), the earliest pigmentary change detected histologically in transplanted body skin of transgenic mice is melanocytic hyperplasia and hypermelanization; it is first unequivocally distinguishable in the superficial dermis. The possibility has not been excluded that still earlier changes may occur in melanocytes in the epidermis. In mouse skin of the snout region, in which the vibrissa follicles are especially prominent, spontaneous early melanomas have occasionally been seen within these follicles in Tyr-SV40E mice (1). Therefore, it seemed likely that, by grafting transgenic skin from the snout area, advanced melanomas might be experimentally obtained from intrafollicular melanocytes. This has been proven to be the case.7

Zymographic Evidence of Plasminogen Activity. The results of in situ zymography to detect plasminogen activation in mouse mela-

7 W. K. Silvers and B. Mintz, unpublished data.

Table 1 Antibodies used in the immunohistochemical analyses

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Antibody</th>
<th>Source</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-PA</td>
<td>#387 Goat anti-human t-PA</td>
<td>American Diagnostica Inc.</td>
<td>17</td>
</tr>
<tr>
<td>u-PA</td>
<td>Pool 6 rabbit anti-mouse u-PA</td>
<td>Finsen Laboratory</td>
<td>18, 19</td>
</tr>
<tr>
<td></td>
<td>#1189 Rabbit anti-mouse u-PA</td>
<td>American Diagnostica Inc.</td>
<td></td>
</tr>
<tr>
<td>PAI-1</td>
<td>Batch 4544 rabbit anti-human PAI-1</td>
<td>Finsen Laboratory</td>
<td>16, 19</td>
</tr>
<tr>
<td></td>
<td>#1062 Rabbit anti-rat PAI-1</td>
<td>American Diagnostica Inc.</td>
<td></td>
</tr>
<tr>
<td>PAI-2</td>
<td>Goat anti-human PAI-2</td>
<td>Behring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#375 Goat anti-human PAI-2</td>
<td>American Diagnostica Inc.</td>
<td></td>
</tr>
</tbody>
</table>
Vibrissa follicles (Fig. Ig). In a mixed tumor (Fig. lc), lysis occurred was absent in normal and transgenic body and snout skin; it also was various times of incubation were examined, and the time of inception of plasminogen activation-mediated lysis was estimated (from — to other.

The pattern proved to be correlated with strong t-PA immunostaining of the larger blood vessels with the t-PA antibody. In normal mouse lung, the specificity of t-PA plasminogen activator for t-PA enzyme activity either was usually not detected or was very localized in the melanocytic lesions examined. u-PA enzyme activity was absent in normal and transgenic body and snout skin; it also was not detected in nevi of body skin (Fig. la) or in intrafollicular nevi of snout skin. Except for separate melanotic and amelanotic derivatives for RT-PCR analysis of t-PA, u-PA, and PAI-1, the two PAI-2 antibodies compared well with each other. Immunolocalization of u-PA, PAI-1, and PAI-2. Characteristic examples of the immunolocalization of u-PA, PAI-1, and PAI-2 are shown in Fig. 2. Staining of melanocytic lesions in transgenic skin exhibited relatively little t-PA staining. Endothelial cell staining for t-PA was encountered only in one body-skin melanoma, in snout skin, and in one amelanotic snout-skin tumor. No other cell types or structures stained for t-PA. These immunohistochemical results were consistent with the t-PA activity results obtained with in situ zymography.

Visualization of PAI-1 and PAI-2. PAI-1 staining was observed in the extracellular matrix (Fig. 2d), vascular endothelial cells (data not shown), and fibroblastic cells (data not shown). In mixed and amelanotic body skin tumors, extracellular matrix staining was observed in 6 of 13 tumors, capillary staining was observed in 2 cases, and fibroblast cell staining in 5 cases. Endothelial cell staining also was found in one of the tumors obtained in snout skin. Except for epidermal staining in most lesions, no PAI-2 could be detected in the melanocytic lesions themselves, other than in the cells of one melanoma (Fig. 2h).

Plasminogen Activation near Ulcerated Skin. Staining for u-PA, PAI-1, and PAI-2 was striking in the thickened epidermis bordering ulcerations over the tumors. Examples of u-PA-positive keratinocytes (Fig. 2f) and the PAI-1-positive extracellular matrix (Fig. 2, e and g) within the same tumors are shown.

RT-PCR Analysis of t-PA, u-PA, and PAI-1 Transcription. Four mixed primary tumors (cases 159, 183, 31, and 222) furnished separate melanotic and amelanotic derivatives for RT-PCR analysis of.
t-PA and u-PA expression (Fig. 3). In three of the original tumors, the amelanotic zone was larger than the melanotic zone, and the reverse was true in one tumor (case 31). The results are based on the respective melanotic and amelanotic components after s.c. propagation in Tyr-SV40E hosts. u-PA expression was substantial in all tumors, except for low expression in one amelanotic derivative. t-PA expression was much more variable, but it was relatively higher in the amelanotic part from each tumor, with notably high expression in case 183.

In addition to the components from four mixed primary tumors in Fig. 3, seven other tumor samples were analyzed by RT-PCR for mRNAs of t-PA, u-PA, and/or PAI-1. These comprised four primary skin melanomas (case 7, in which the amelanotic zone predominated, and cases 24, 35, and 187, which appeared to be entirely amelanotic), as well as three metastases (an amelanotic lung metastasis from primary tumor 24, a melanotic lung metastasis from primary tumor 159, and a melanotic lymph node metastasis from primary tumor 159). All of these tumors were positive for the markers analyzed (data not shown). Only three displayed a notably strong hybridizing signal for t-PA under similar RT-PCR conditions. They were two of the three all amelanotic primary tumors (cases 35 and 187) and the amelanotic lung metastasis (from the skin tumor in case 24).

DISCUSSION

The PA system has been implicated in melanoma metastasis through experiments based on human or mouse melanoma cell lines and on models in which the cultured cells were introduced into mice (9–13, 27). Those studies were limited by genetic and other differences among melanoma cell lines and between long-established cell lines and primary melanomas. Established cell lines are, in fact, likely to be homogeneous with respect to production of certain proteins, whereas melanomas may be heterogeneous. For example, in human melanomas, only a minority of tumor cells, often at the periphery of the tumor, produce u-PA (14, 15). Moreover, different components of the PA system may vary quantitatively among melanocytic lesions, depending on their stages in tumor progression. Herein, we report the first in vivo investigation of the PA system in an animal model of melanoma.

The melanocytic lesions observed in this study arose in genetically
Fig. 2. Immunohistochemical visualization of the u-PA (a–c and f), PAI-1 (d, e, and g), and PAI-2 (h) components of the PA system is demonstrated in stained frozen sections of mouse melanomas. u-PA was found in capillary sprouts in most melanomas (a), only occasionally in some melanoma cells and in granulocytes (the cells with lobulated nuclei; b), and in the stroma (c). PAI-1 was found in the extracellular matrix (d). PAI-2 was rarely present; an example in tumor cells is shown in h. In the ulcerated area of a melanoma (e) with a thickened epidermis (arrowheads) bordering the ulcer, there is enhanced staining for u-PA in the epidermis (f) and for PAI-1 (e, detail shown in g). Examples of u-PA staining in a, b, and c are from the same lesions as those shown in the zymography study (e, c, and d, respectively, in Fig. 1). Magnification bar, 13 μm (a–d and h), 26 μm (f and g), and 67 μm (e).
other proteases for this function. Experimentally gene-deficient mice abundant t-PA expression in melanoma cell lines and in human uveal the PA system (19, 36—38).

thickened epidermal edges bordering sites of tumor ulceration, fibrinolysis and are healthy (17, 35).

ence between mouse and human melanomas, because, in the latter, a (33), and angiogenesis is thought to facilitate growth and metastasis of capillaries suggests a role in angiogenesis. Indeed, in models relying on the presence of the protein.

Immediate localization of u-PA in the endothelium of sprouting capillaries in the large majority of mouse melanomas was particularly striking. PAI-1 also was present in capillaries, albeit less frequently. This localization of mouse u-PA and PAI-1 in growing capillaries suggests a role in angiogenesis. Indeed, in models relying on cell lines, u-PA (28, 29), its receptor (30), and PAI-1 (31) have been found to be expressed in angiogenesis. u-PA and PAI-1 also are believed to be involved in angiogenesis under physiological conditions (32). Little is known about the involvement of the PA system in tumor angiogenesis, although PAI-1 mRNA has been found in vascular endothelial cells at the tumor-stroma interface in colon cancer (33), and angiogenesis is thought to facilitate growth and metastasis of tumors in general (reviewed in Ref. 34).

Melanoma cells in the transgenic mouse tumors rarely showed u-PA activity, except for one tumor in which some areas had appreciable numbers of u-PA-positive cells. This may signal some difference between mouse and human melanomas, because, in the latter, a larger minority of the tumor cells produce u-PA. It is possible that the melanoma cells do not directly use u-PA for metastasis and depend on other proteases for this function. Experimentally gene-deficient mice lacking both u-PA and t-PA, or lacking PAI-1 are, in fact, capable of fibrinolysis and are healthy (17, 35).

In addition, u-PA and the PAIs were concurrently found at the thickened epidermal edges bordering sites of tumor ulceration, thereby implying a role in wound healing, as has been proposed for the PA system (19, 36—38).

In contrast to the u-PA results, t-PA was absent or low in the mouse melanocytic lesions, based on in situ zymography and immunohistochemistry. This finding was especially noteworthy in view of the abundant t-PA expression in melanoma cell lines and in human uveal melanoma (11, 14, 15, 39—41). In this study, t-PA protein and activity were detected by visual criteria only in the larger blood vessels of normal lung. It appears that t-PA is very low in the smaller caliber blood vessels of mouse tissues, but that it may be seen in small human vessels and benign tumor cells (14, 15).

The RT-PCR analyses allowed the PA study to be carried out on much larger tissue samples than is feasible with tissue sections. We also expanded the study by comparing melanotic and amelanotic components from primary melanomas and by comparing metastases with the skin melanoma of origin. Most of the skin melanomas chosen for RT-PCR had pronounced melanotic and amelanotic zones, and some had metastasized, whereas the mixed tumors fortuitously available when the in situ analyses were undertaken were largely amelanic and had very small metastases. In agreement with the in situ visualization of PA proteins and activity, the RT-PCR results demonstrated that u-PA and PAI-1 mRNAs are more consistently expressed than is t-PA mRNA. Novel observations were the relatively greater expression of t-PA in the amelanotic than in the melanotic parts derived from mixed primary tumors, and the high t-PA expression in most all-amelanotic primary tumors and metastases. One possible explanation, based on preliminary observations of these tumors during dissection, is that the amelanotic tumors or parts may more often contain large blood vessels, which could account for higher t-PA expression, as in normal lung.

Therefore, u-PA is the paramount PA in the in vivo mouse melanoma model, and its presence and activity increase with malignant progression. Because u-PA and, to a lesser extent, PAI-1 are localized predominantly in the endothelial cells of new vascular sprouts rather than in the melanoma cells, u-PA or both u-PA and PAI-1 might provide an experimental therapeutic target against neoangiogenesis in melanomas and indirectly against melanoma progression. One caveat is the low expression at early stages and the variable expression within and among melanomas.

ACKNOWLEDGMENTS

We thank John Rømer of the Finsen Laboratory, Copenhagen, Denmark; Robert Cohen of Genentech, San Francisco, CA; and David Teicher of American Diagnostica Inc., Greenwich, CT for generously supplying antibodies and mouse u-PA and t-PA standards.

REFERENCES

*J. L. Kitson and B. Mintz, unpublished data.
PLASMINOGEN ACTIVATION IN MOUSE MELANOMA

Expression of Plasminogen Activators and Plasminogen Activator Inhibitors in Cutaneous Melanomas of Transgenic Melanoma-susceptible Mice

Teunis J. de Vries, Janice L. Kitson, Willys K. Silvers, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/55/20/4681

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.