Sensitization of Human Renal Cell Carcinoma Cells to cis-Diaminedichloro platinum(II) by Anti-Interleukin 6 Monoclonal Antibody or Anti-Interleukin 6 Receptor Monoclonal Antibody

Youichi Mizutani, Benjamin Bonavida, Yasuo Koishiha, Ken-ichi Akamatsu, Yoshiyuki Ohsugi, and Osamu Yoshida

Department of Urology, Faculty of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku-Kyoto 606, Japan [Y. M., O. Y.]; Department of Microbiology and Immunology, UCLA School of Medicine, University of California at Los Angeles, California 90024 [B. B.]; and Chugai Pharmaceuticals Co., Ltd., Shizuoka 412, Japan [Y. K., K.-A. Y. O.]

ABSTRACT

Cytotoxic chemotherapy has shown little antitumor activity against renal cell carcinoma (RCC). It has been demonstrated that RCC cells secrete interleukin 6 (IL-6) and express IL-6 receptors (IL-6Rs). IL-6 inhibits apoptosis and enhances manganese superoxide dismutase expression. Several anticancer chemotherapeutic agents exert their cytotoxic activity in part through the induction of apoptosis and the production of free radicals. Thus, the resistance of RCC cells to the anticancer agents might correlate with IL-6 expression. The present study tested this hypothesis by examining the effect of anti-IL-6 mAb and anti-IL-6R mAb in the sensitivity of human RCC cells to anticancer chemotherapeutic agents. Treatment of Caki-1 cells with anti-IL-6 mAb or anti-IL-6R mAb in combination with cis-diaminedichloro platinum(II) (CDDP) or mitomycin C overcame their resistance to CDDP or mitomycin C. However, treatment of Caki-1 cells with anti-IL-6 mAb or anti-IL-6R mAb in combination with Adriamycin, vinblastine, or 5-fluorouracil did not overcome their resistance to these anticancer agents. Treatment of CDDP-resistant Caki-1 cells (Caki-1/DDP), two other RCC cell lines (ACHN and A704), and three freshly derived RCC cells with CDDP in combination with anti-IL-6 mAb or anti-IL-6R mAb reversed the resistance to CDDP in all these tumors. We then studied the effectiveness of other platinum derivatives. Treatment of Caki-1 cells with anti-IL-6 mAb or anti-IL-6R mAb enhanced their sensitivity to carboplatin, but not to trans-diaminedichloro platinum(II). Several experiments investigated the mechanism of the antibody-mediated sensitization of RCC cells to CDDP. Incubation of Caki-1 cells with anti-IL-6 mAb or anti-IL-6R mAb did not change the intracellular accumulation of CDDP. The expressions of the multidrug resistant phenotype (gp170) and c-myc oncogene were not affected by the antibody-mediated sensitization. Treatment of Caki-1 cells with the anti-IL-6 mAb or anti-IL-6R mAb down-regulated the expression of glutathione S-transferase η mRNA. This study demonstrates that treatment of RCC cells with CDDP in combination with anti-IL-6 mAb or anti-IL-6R mAb can overcome their CDDP-resistance and that the down-regulation of glutathione S-transferase η expression by anti-IL-6 mAb or anti-IL-6R mAb might play a role in the enhanced cytotoxicity obtained. The synergistic effect obtained with established CDDP-resistant RCC cells and freshly isolated RCC cells suggests that treatment with CDDP in combination with anti-IL-6 mAb or anti-IL-6R mAb may be applicable in the treatment of CDDP-resistant RCC.

INTRODUCTION

Cytotoxic chemotherapy, an integral part of the therapeutic approach for many solid tumors, has shown little or no antitumor activity against RCC2 and has played no role in either an adjuvant or a neoadjuvant support therapy (1, 2). Due to the absence of any significant antitumor response with the use of single therapeutic agents, the use of multidrug combination regimens also proved ineffective when evaluated in prospective trials against a single drug (3, 4). Although P-glycoprotein has been described as a possible defective factor against anticancer chemotherapeutic agents such as ADR and VBL in RCC (5, 6), the precise mechanisms of the protective action of RCC cells against other anticancer agents such as CDDP are not yet fully understood.

IL-6 is a multifunctional cytokine produced by various types of lymphoid and nonlymphoid cells (7). Although the first detected function of IL-6 was the induction of B cell differentiation and the production of immunoglobulins, IL-6 is also involved in other activating processes (8, 9). IL-6 has been shown to stimulate liver cells, to synthesize acute phase proteins, to play a role in hematopoiesis and T cell activation, and to act as a potent growth factor for myeloma cells and plasmacytoma cells (10, 11). RCC cells secrete IL-6 and express IL-6Rs, and published reports showed that IL-6 plays a role in the sensitization of RCC cells to anticancer chemotherapeutic agents.

Several anticancer chemotherapeutic agents such as CDDP and MMC induce apoptosis, and IL-6 suppressed the induction of apoptosis by the cytotoxic agents (16, 17). Some anticancer chemotherapeutic agents such as CDDP and MMC exert their cytotoxic activity in part through free radical generation (18, 19). It has been reported that IL-6 enhances the expression of MnSOD, a free radical scavenger, and anti-IL-6 antibody abrogates the enhanced expression of MnSOD (20, 21). Since RCC cells produce IL-6, it is possible that IL-6 might be one factor regulating sensitivity and resistance of RCC cells to anticancer agents. To determine the contribution of IL-6 production to drug resistance, this study investigated whether treatment of RCC cells with anti-IL-6 mAb or anti-IL-6R mAb enhanced their sensitivity to anticancer chemotherapeutic agents. Therefore, this study explored possible underlying mechanisms involved in reversal of drug resistance by anti-IL-6/IL-6R mAbs.

MATERIALS AND METHODS

Tumor Cells. The Caki-1, ACHN, and A704 human RCC cell lines were maintained in monolayers on plastic dishes in RPMI 1640 (Gibco Bio-cult, Glasgow, United Kingdom) supplemented with 25 mM HEPES (Gibco), 2 mM L-glutamine (Gibco), 1% nonessential amino acid (Gibco), 100 units/ml penicillin (Gibco), 100 μg/ml streptomycin (Gibco), and 10% heat-inactivated fetal bovine serum (Gibco), hereafter referred to as complete medium (22, 23). The Caki-1/DDP line is a CDDP-resistant subline of the Caki-1 cell line.

Three fresh RCC derived cells were separated from surgical specimens as previously described (24, 25). The histological diagnosis revealed that all patients had adenocarcinoma of RCC. Their histological classification and staging according to the TNM classification was: Patient 1, T3N1M1, Grade 3;...
Cytotoxic Assay. The MTT assay was used to determine tumor cell lysis as described previously (28, 29). Briefly, 100 μl of target cell suspension (2 X 10^4 cells) were added to each well of 96-well flat-bottomed microtiter plates (Corning Glass Works, Corning, NY), and each plate was incubated for 24 h at 37°C in a humidified 5% CO2 atmosphere. After incubation, the supernatant was aspirated, tumor cells were washed three times with RPMI, 200 μl of drug solution were distributed in the 96-well plates, and each plate was incubated for 24 h at 37°C. Following incubation, 20 μl of MTT working solution (5 mg/ml, Sigma) were added to each culture well and the cultures were incubated for 4 h at 37°C. The culture medium was removed from the wells and replaced with 100 μl of isopropyl alcohol supplemented with 0.05 N HCl. The absorbance of each well was measured with a microculture plate reader (Immunoreader; Japan Intermed Co., Ltd., Tokyo, Japan) at 540 nm. The percentage of cytotoxicity was calculated as:

\[
\% \text{ of cytotoxicity} = \left[1 - \left(\frac{\text{absorbance of experimental wells}}{\text{absorbance of control wells}}\right)\right] \times 100
\]

IL-6 ELISA. IL-6 in the supernatant of tumor cells was quantitated by ELISA. Wells of 96-well ELISA plates were coated with anti-IL-6 mAb. To set up the assay, coated plates were washed and blocked with ELISA PBS containing 1% BSA. Plates were washed and 100 μl of tumor supernatants and IL-6 standard were added to the wells. After 1 h of incubation, plates were washed and 100 μl of anti-IL-6 polyclonal antibody were added to each well. After 1 h incubation, alkaline phosphatase-conjugated goat anti-rabbit IgG was added to each well and incubated for an additional 1 h. Finally, plates were washed and incubated with substrate (p-nitrophenyl phosphate, disodium, hexahydrate). Plates were read 2 h later at 405 nm using an ELISA reader (Immunoreader; Japan Intermed Co., Ltd., Tokyo, Japan) at 540 nm. The percentage of cytotoxicity was calculated as:

\[
\% \text{ of cytotoxicity} = \left[1 - \left(\frac{\text{absorbance of experimental wells}}{\text{absorbance of control wells}}\right)\right] \times 100
\]

RESULTS

Tumor cells synthesize and secrete various cytokines and growth factors. Several of these cytokines can act in an autocrine/paracrine fashion in stimulation of tumor cell proliferation. Under these conditions, antibodies to the cytokines and/or the cytokine receptors, therefore, should inhibit the cytokine-mediated proliferation and may sometimes stimulate cell death and/or apoptosis. However, it is not clear whether blocking the cytokines/receptors by antibodies sensitizes the cells to the cytotoxic effect of chemotherapeutic agents. RCC lines and freshly derived RCC tumors used in this study secrete IL-6-2. We examined whether anti-IL-6 mAb or anti-IL-6R mAb sensitized the RCC cells to cytotoxic drugs.

IL-6 Secretion by RCC Cells. Four RCC lines (Caki-1, Caki-1/DDP, ACHN, A704) and three freshly isolated RCC cells constitutively produced IL-6 (Table 1). The RCC lines also expressed IL-6R (data not shown). Flow cytometric analysis demonstrated that the levels of IL-6R expression on Caki-1 cells, A704 cells, and ACHN cells were almost the same.

Sensitization of RCC Cells to CDDP and MMC by Antibodies to IL-6 and IL-6R. We first examined the effect of anti-IL-6/IL-6R mAbs on the sensitivity of Caki-1 cells to CDDP, MMC, ADR, VBL, or 5-FUra. Various concentrations of each agent were used alone and in combination and cytotoxicity was measured by a 1-day MTT assay. Clearly, there was significant augmentation of cytotoxicity of CDDP (Fig. 1, A and B) and MMC (Fig. 2) by the addition of the antibodies, but the sensitizing effect to MMC was modest. Treatment of Caki-1 cells with isotype-matched control antibody had no effect on their sensitivity to CDDP and MMC (data not shown). The results also demonstrate that synergy was achieved by the combined use of low concentrations of each agent alone and that these concentrations were 10—100-fold less than those required to achieve similar cytotoxicity by either agent alone. In contrast, treatment of Caki-1 cells with anti-IL-6 mAb or anti-IL-6R mAb did not change their sensitivity to ADR, VBL, or 5-FUra (data not shown). Anti-IL-6/IL-6R mAbs by themselves did not inhibit cell proliferation in a 1-day or a 3-day MTT assay (data not shown).

We examined the sensitivity of a CDDP resistant subline, Caki-1/DDP, to the synergistic effect of CDDP in combination with anti-IL-6.
ENHANCED SENSITIVITY OF RCC TO CDDP BY ANTI-IL-6/IL-6R mAbs

Fig. 1. Enhanced sensitivity of RCC cell lines to CDDP by anti-IL-6 mAb or anti-IL-6R mAb. The cytotoxic effect of CDDP in combination with anti-IL-6 mAb (A, C, E, G) or anti-IL-6R mAb (B, D, F, H) on Caki-1 cells (A, B), Caki-1/DDP cells (C, D), ACHN cells (E, F), and A704 cells (G, H) was assessed in a 1-day MTT assay. The results are expressed as the mean of 3 different experiments. SD ranged from 0.4 to 8.9. *, P < 0.05 versus CDDP alone. ▲, CDDP alone; ■, CDDP with anti-IL-6 mAb or anti-IL-6R mAb at 0.1 μg/ml; ●, CDDP with anti-IL-6 mAb or anti-IL-6R mAb at 1 μg/ml; ●, CDDP with anti-IL-6 mAb or anti-IL-6R mAb at 10 μg/ml.

Fig. 2. Enhanced sensitivity of Caki-1 cells to MMC by anti-IL-6 mAb or anti-IL-6R mAb. The cytotoxic effect of MMC in combination with anti-IL-6 mAb (A) or anti-IL-6R mAb (B) on Caki-1 cells was assessed in a 1-day MTT assay. The results are expressed as the mean of 3 different experiments. SD ranged from 0.4 to 3.8. *, P < 0.05 versus CDDP alone. ▲, CDDP alone; ■, with anti-IL-6 mAb or anti-IL-6R mAb at 0.1 μg/ml; ●, CDDP with anti-IL-6 mAb or anti-IL-6R mAb at 1 μg/ml; ●, CDDP with anti-IL-6 mAb or anti-IL-6R mAb at 10 μg/ml.

mAb or anti-IL-6R mAb. The results show that CDDP resistance was overcome by treatment with CDDP in combination with anti-IL-6 mAb or anti-IL-6R mAb (Fig. 1, C and D). The findings obtained with Caki-1 cells were not selective for this line. Similar findings of synergy were observed with two other RCC lines, ACHN cells or A704 cells (Fig. 1, E-H). Likewise, the findings seen in established tumor cell lines were corroborated with fresh RCC cells derived from three patients (Fig. 3, A–C).

We then questioned whether platinum derivatives are as effective as CDDP in achieving synergy with anti-IL-6/IL-6R mAbs. The results show that combination of carboplatin and antibodies resulted in overcoming resistance to carboplatin (Fig. 4, A and B). However, there was no effect on TDDP (Fig. 4, C and D).

Altogether, these findings demonstrate that treatment of RCC established lines or freshly derived RCC cells with CDDP in combination with anti-IL-6 mAb or anti-IL-6R mAb resulted in sensitization of the cells to CDDP. Furthermore, a CDDP-resistant line was also rendered sensitive. The synergy obtained with low concentrations of each agent are of clinical relevance, since high concentrations of drugs are toxic in vivo.

Mechanism of Tumor Cell Sensitization to CDDP by Anti-IL-6/IL-6R mAbs. The findings above demonstrate that simultaneous treatment of Caki-1 cells with CDDP in combination with anti-IL-6 mAb or anti-IL-6R mAb overcame their resistance to CDDP. The effect of sequential treatment with CDDP in combination with anti-IL-6 mAb or anti-IL-6R mAb was examined and compared to treatment with both agents added together. Caki-1 cells were treated for 4 h with one agent, the medium was removed, the second agent was subsequently added for 20 h, and the cells were tested for viability. The findings in Table 2 demonstrate that the highest percentage of cytotoxicity was seen when CDDP was given together with
ENHANCED SENSITIVITY OF RCC TO CDDP BY ANTI-IL-6/IL-6R mAbs

![Graphs showing the effect of CDDP alone and in combination with anti-IL-6 mAb or anti-IL-6R mAb on RCC cells.](image)

Fig. 3. Enhanced sensitivity of freshly isolated RCC cells to CDDP by anti-IL-6 mAb or anti-IL-6R mAb. The cytotoxic effect of CDDP in combination with anti-IL-6 mAb (10 \(\mu \)g/ml) or anti-IL-6R mAb (10 \(\mu \)g/ml) on three fresh RCC cells (A, Patient 1; B, Patient 2; C, Patient 3) was assessed in a 1-day MTT assay. The results are expressed as the mean of 3 triplicate samples; bars, SD. * \(p < 0.05 \) versus CDDP alone.

anti-IL-6/IL-6R mAbs, but higher cytotoxicity was obtained irrespective of the sequence of treatment.

We then asked whether anti-IL-6 mAb or anti-IL-6R mAb affect the intracellular accumulation of CDDP. The findings in Table 3 demonstrate that the antibodies had no effect on intracellular accumulation of CDDP.

Caki-1 cells express the MDR phenotype. It was possible that treatment with anti-IL-6 mAb or anti-IL-6R mAb modified MDR gp170 expression. The expression of P-glycoprotein by flow cytometry was not modified by the antibody treatment, suggesting that the MDR phenotype is not directly involved in sensitization (Table 4).

It has been reported that the c-myc oncogene increases the resistance of tumor cells to CDDP (33, 34). The role of c-myc expression in reversing CDDP resistance was examined. Treatment with anti-IL-6 mAb or anti-IL-6R mAb had no effect on the expression of p62 c-myc gene product (Table 4).

We then analyzed the expression of GST-\(\pi \) gene which has been reported to be overexpressed in CDDP-resistant cells (35, 36). Caki-1 cells constitutively expressed mRNA for GST-\(\pi \) (Fig. 5, A and B). While treatment of Caki-1 cells with CDDP had no effect on GST-\(\pi \) mRNA expression, treatment with anti-IL-6 mAb or anti-IL-6R mAb down-regulated GST-\(\pi \) mRNA expression. Kinetics studies demonstrated that the down-regulation of GST-\(\pi \) mRNA expression became noticeable by 1 h and continued until 24 h (Fig. 5, C and D). These results suggest that the down-regulation of GST-\(\pi \) mRNA expression may be in part responsible for the observed sensitization of RCC to CDDP by anti-IL-6 mAb or anti-IL-6R mAb.

DISCUSSION

RCC cells are resistant to anticancer chemotherapeutic agents including CDDP (1, 2). RCC cells secrete IL-6 and IL-6 can act as a resistance promoting factor (13, 17, 20, 21, 37). We reasoned that agents that can inhibit IL-6 secretion may render the cells more sensitive to drugs. The present study tested this hypothesis and provides experimental evidence that down-regulation of IL-6 sensitizes RCC cells to the cytotoxic effect of CDDP.

The present study demonstrates that treatment of RCC cells with anti-IL-6 mAb or anti-IL-6R mAb enhanced their sensitivity to CDDP. The mechanism of overcoming CDDP resistance by CDDP in combination with anti-IL-6 mAb or anti-IL-6R mAb was examined. There was no observed effect on CDDP accumulation in the cells. The level of GST-\(\pi \) expression in tumor cells correlates with their resistance to CDDP (35, 36). Treatment of Caki-1 cells with anti-IL-6 mAb or anti-IL-6R mAb down-regulated the expression of GST-\(\pi \) mRNA, thus rendering the cells sensitive to CDDP.

The fresh RCC cells from Patient 2 appeared to produce the lowest level of IL-6 concentration and were highly sensitive to CDDP but demonstrated the highest synergy between anti-IL-6/IL-6R antibodies and CDDP. The concentration of 10 \(\mu \)g/ml antibodies may be high enough to abrogate IL-6 secretion by the fresh RCC cells in a 24-h MTT assay completely. This may result in the highest synergy between the antibodies and CDDP in the fresh RCC cells from Patient 2.
Table 2 Effect of sequence of treatment with CDDP in combination with anti-IL-6 mAb or anti-IL-6R mAb on cytotoxic activity against Caki-1 cells

<table>
<thead>
<tr>
<th>First treatment* (4 h)</th>
<th>Second treatment* (20 h)</th>
<th>% of cytotoxicity</th>
<th>Anti-IL-6 mAb</th>
<th>Anti-IL-6R mAb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>mAb</td>
<td>3.3 ± 0.9</td>
<td>2.2 ± 1.1</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>CDDP</td>
<td>25.1 ± 2.4</td>
<td>23.6 ± 2.4</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>CDDP plus mAb</td>
<td>46.1 ± 2.3</td>
<td>48.7 ± 6.0</td>
<td></td>
</tr>
<tr>
<td>mAb</td>
<td></td>
<td>34.1 ± 6.4</td>
<td>33.9 ± 2.4</td>
<td></td>
</tr>
<tr>
<td>CDDP</td>
<td></td>
<td>35.8 ± 4.4</td>
<td>29.2 ± 5.5</td>
<td></td>
</tr>
</tbody>
</table>

* Caki-1 cells were pretreated with medium only, CDDP (1 μg/ml), anti-IL-6 mAb (10 μg/ml), or anti-IL-6R mAb (10 μg/ml) for 4 h (first treatment). The medium was aspirated and Caki-1 cells were washed twice with RPMI. The cells were then incubated with CDDP (1 μg/ml), anti-IL-6 mAb (10 μg/ml), and/or anti-IL-6R mAb (10 μg/ml) for 20 h (second treatment). Cytotoxicity was assessed in a 1-day MTT assay. Mean ± SD of 3 different experiments.

The mechanisms responsible for cellular resistance to CDDP are believed to be multifactorial and to include alterations in the transmembrane transport of CDDP, the cytosolic quenching of CDDP due to increased levels of sulfhydryl compounds, the enhanced DNA adduct repair capability, and activation of oncogenes such as c-myc oncogene (33, 34). Alterations in the transmembrane transport of CDDP in tumor cells result in reduced intracellular accumulation of CDDP and resistance to CDDP, inasmuch as a correlation exists between intracellular accumulation of CDDP and CDDP resistance (38, 39). Evidence for cytosolic quenching of CDDP by either glutathione- or sulfhydryl-containing proteins has been obtained in tumor cell lines made resistant to CDDP in vitro. Some CDDP-resistant cells have higher levels of intracellular glutathione or metallothionein (40, 41). CDDP is also known to inhibit DNA synthesis by binding to DNA and forming intrastrand and interstrand cross-links in DNA (42, 43). Cell-mediated augmentation of DNA repair capability plays a major role in CDDP resistance in several mammalian cell lines studied (44).

Glutathione is a tripeptide thiol and is the most abundant nonprotein sulfhydryl compound in mammalian cells; it plays an important role in detoxification of alkylating agents and cross-linking agents such as CDDP and in repair of cellular injury by these drugs (28, 45, 46). One of the functions of GST is to conjugate these drugs to glutathione. It has been reported that overexpression of GST-π is associated with the acquisition of resistance to CDDP (35, 36). We have demonstrated in this study that the expression of GST-π mRNA in Caki-1 cells was reduced following treatment of the tumor cells with anti-IL-6 mAb or anti-IL-6R mAb. This finding indicates that one of the mechanisms responsible for the sensitizing effect of anti-IL-6 mAb or anti-IL-6R mAb may be down-regulation of GST-π gene expression.

CDDP mediates a significant inhibitory effect on DNA synthesis. The effect is mediated through binding of CDDP to DNA and the formation of intrastrand and interstrand cross-links in DNA (42, 43). Carbothiol, a closely related platinum analogue, possesses antitumor activity similar to that of CDDP (47, 48). However, CDDP has much lower activity, since the chloride and ammonium groups are in the trans position and TDDP cannot bind tightly to DNA (49, 50). Treatment of Caki-1 cells with carbothiol in combination with anti-IL-6 mAb or anti-IL-6R mAb resulted in a synergistic cytotoxicity, while treatment with TDDP in combination with anti-IL-6 mAb or anti-IL-6R mAb did not. These results suggest that IL-6 may closely

Table 3 Effect of treatment of Caki-1 cells with anti-IL-6 mAb or anti-IL-6R mAb on the intracellular accumulation of CDDP or 5-FUra

<table>
<thead>
<tr>
<th>Drug</th>
<th>Control (Medium)</th>
<th>Control Ab</th>
<th>Anti-IL-6 mAb</th>
<th>Anti-IL-6R mAb</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDDP</td>
<td>0.28 ± 0.05</td>
<td>0.27 ± 0.02</td>
<td>0.26 ± 0.05</td>
<td>0.27 ± 0.02</td>
</tr>
<tr>
<td>5-FUra</td>
<td>1.48 ± 0.32</td>
<td>1.57 ± 0.45</td>
<td>1.50 ± 0.19</td>
<td>1.63 ± 0.31</td>
</tr>
</tbody>
</table>

* Caki-1 cells were treated with CDDP (10 μg/ml) or 5-FUra (100 μg/ml) in combination with medium, control antibody (10 μg/ml), anti-IL-6 mAb (10 μg/ml), or anti-IL-6R mAb (10 μg/ml) for 24 h. The medium was aspirated and Caki-1 cells were washed three times with RPMI. The intracellular concentration of CDDP was measured by flameless atomic absorption spectrometry and the intracellular concentration of 5-FUra was measured by a gas chromatographic-mass fragmentographic method as described in "Materials and Methods." The results are expressed as the mean ± SD of 3 different experiments.
Fig. 5. Effect of treatment of Caki-1 cells with CDDP, anti-IL-6 mAb, or anti-IL-6R mAb on the level of GST-σ mRNA. Caki-1 cells were treated with medium (10 μg/ml), anti-IL-6 mAb (10 μg/ml), or anti-IL-6R mAb (10 μg/ml) for 4 h. Total RNA was then separated, Northern blotted, and probed for GST-σ as described in "Materials and Methods." Each lane is GST-σ mRNA of Caki-1 cells after the following treatment (A): Lane 1, medium only; Lane 2, CDDP; Lane 3, anti-IL-6 mAb; Lane 4, anti-IL-6R mAb. B, ethidium bromide staining of the same gel as control of the amount of RNA present in each lane. Caki-1 cells were treated with medium or anti-IL-6R mAb (10 μg/ml) for 1–24 h. Total RNA was then separated, Northern blotted, and probed for GST-σ as described in "Materials and Methods." Each lane is GST-σ mRNA of Caki-1 cells after the following treatment (C): Lane 1, medium only; Lane 2, 1-h treatment; Lane 3, 4-h treatment; Lane 4, 24-h treatment. D, ethidium bromide staining of the same gel as control of the amount of RNA present in each lane.

ENHANCED SENSITIVITY OF RCC TO CDDP BY ANTI-IL-6/IL-6R mAbs

regulate or participate directly in DNA repair processes that affect the type of DNA cross-linking damage caused by CDDP.

Although the down-regulation of GST-σ mRNA expression by anti-IL-6 mAb or anti-IL-6R mAb is suggestive for CDDP sensitization, the precise mechanism of overcoming resistance of Caki-1 cells to CDDP by treatment with CDDP in combination with anti-IL-6 mAb or anti-IL-6R mAb is not fully understood. CDDP shows its cytotoxicity partly through the induction of apoptosis (16, 51). Previous studies demonstrated that IL-6 suppressed the induction of apoptosis by anticancer chemotherapeutic agents (17, 37). Our findings suggest that treatment with anti-IL-6 mAb or anti-IL-6R mAb might enhance the sensitivity of RCC cells to CDDP by blocking IL-6-mediated inhibition of the induction of apoptosis. CDDP shows its cytotoxic activity in part through the generation of free radicals (16). It has been reported that IL-6 enhances the expression of MnSOD, a free radical scavenger, and anti-IL-6 antibody abrogates the increased expression of MnSOD (20, 21). Thus, treatment of RCC cells with anti-IL-6 mAb or anti-IL-6R mAb might enhance their sensitivity to CDDP by decreasing MnSOD expression. Since the effects of IL-6 on apoptosis and MnSOD expression may vary with cell types, further studies are needed to corroborate these hypotheses. As with GST-σ expression, metallothionein has been associated with resistance to CDDP (35, 41). Metallothionein is highly regulated and the blocking of metallothionein action or production might be another mechanism of interaction. The mechanisms of CDDP sensitization by anti-IL-6/IL-6R mAbs await further investigations.

Treatment of Caki-1 cells with anti-IL-6 mAb or anti-IL-6R mAb enhanced their sensitivity to MMC, but the effect was modest. This finding is in agreement with the findings of other study (52). Like CDDP, MMC exerts its cytotoxic activity in part through free radical generation and in part through induction of apoptosis. Also, there is a correlation between MMC resistance and GST-σ expression (17, 53, 54). Therefore, treatment of Caki-1 cells with MMC in combination with anti-IL-6 mAb or anti-IL-6R mAb may overcome their resistance to MMC by down-regulation of the expression of GST-σ and MnSOD and suppressing the blocking of apoptosis.

The current studies showing that anti-IL-6 mAb or anti-IL-6R mAb sensitized both acquired and natural CDDP-resistant RCC cells to CDDP was not restricted to established cell lines but was also observed in freshly derived tumors. Therefore, the therapeutic use of CDDP in combination with anti-IL-6 mAb or anti-IL-6R mAb might be useful in the treatment of patients with CDDP-resistant RCC. We reported that a humanized anti-IL-6R mAb was developed (55), and its use in vivo might circumvent the induction of anti-mouse antibodies with murine mAbs.

REFERENCES
14. Blay, J., Negrier, S., Combaret, V., Attali, S., Goillot, E., Merrouche, Y., Mercatello,
ENHANCED SENSITIVITY OF RCC TO CDDP BY ANTI-IL-6R mAbs

Downloaded from cancerres.aacrjournals.org on April 13, 2017. © 1995 American Association for Cancer Research.
Sensitization of Human Renal Cell Carcinoma Cells to cis-Diamminedichloroplatinum(II) by Anti-Interleukin 6 Monoclonal Antibody or Anti-Interleukin 6 Receptor Monoclonal Antibody

Youichi Mizutani, Benjamin Bonavida, Yasuo Koishihara, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/55/3/590

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.