DNA Strand Break Rejoining Defect in xrs-6 Is Complemented by Transfection with the Human Ku80 Gene

Radiotherapy Research Unit, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG [G. M. R., J. J. E., N. P. M., C. B., G. G. J., T. J. M.], and MRC Cell Mutation Unit, University of Sussex, Falmer, Brighton, Sussex, [P. A. J.], United Kingdom

Abstract

The radiosensitive mutant xrs-6, derived from Chinese hamster ovary cell line CHO-K1, has been demonstrated to be defective in DNA double-strand break repair and also in its proficiency to undergo V(D)J recombination. Recent work has provided both genetic and biochemical evidence that the M, 80,000 subunit of the Ku protein is able to complement the radiosensitivity and the V(D)J recombination defect in the xrs-6 mutant. We demonstrate here that complementation of the radiosensitive phenotype in xrs-6 cells by the introduction of Ku80 cDNA is accompanied by the concomitant restoration of DNA double-strand break rejoining proficiency to almost that of the parental CHO-K1 cells, as measured both by neutral single-cell microgel electrophoresis (Comet) technique and by pulsed-field gel electrophoresis. These results provide further biochemical evidence for the involvement of the Ku protein in the repair of DNA double-strand breaks.

Introduction

DNA dsb are critical lesions disrupting the integrity of the DNA duplex. Such lesions arise following ionizing radiation damage, during the repair of other DNA lesions, and as an intermediate in the recombination step of immunoglobulin gene rearrangement. Among the wide range of classes of damage induced by ionizing radiation, it is believed that the fate of dsb, or a subset of dsb, determines radiation-induced cytotoxicity.

A number of rodent mutants defective in the repair of DNA dsb have been identified and can be classified into at least three complementation groups. One such group includes six mutants isolated from the CHO-K1 cell line, namely xrs-1–6 (4, 5), and one mutant, XR-V15B, derived from V79 cells. The repair gene implicated in the determination of the phenotype of these mutants has been designated XRCC5.

Evidence for the localization of the human XRCC5 gene to chromosome 2q was provided by complementation of the repair defect in xrs-6 by transfer of human chromosome 2 using microcell-mediated chromosome transfer; this resulted in correction of both ionizing radiation-induced DNA dsb (6). Further mapping of the gene located it to the region 2q 33-35 (7).

The recent recognition of a lack of DNA end-binding activity in xrs1-6 led to the investigation of the gene coding for Ku80 as the candidate XRCC5 gene. Ku binds to free double-stranded DNA ends (11) and is the DNA-binding component of DNA-dependent protein kinase (12). The ability of the Ku80 protein to correct the radiosensitivity and V(D)J recombination defect in xrs cells has been confirmed by a combination of genetic and biochemical approaches (13, 14). The aim of this study was to examine whether the Ku80 gene was also able to complement the defect in the rejoining of ionizing radiation-induced DNA dsb in xrs-6 cells.

Materials and Methods

Cell Lines. The cell lines used were the parental line, CHO-K1, its ionizing radiation-sensitive mutant xrs-6, and an X-ray resistant xrs-6 Ku transfectant line designated xrs-6/Ku80. The derivation of these lines is described in Taccioli et al. (14). xrs-6/Ku80 contained a 2200-base pair sequence containing the Ku80 open reading frame in an expression vector p220LTR under the control of the Rous sarcoma virus long terminal repeat promoter. A Ku80 transfectant that retained resistance to hygromycin but which had lost its Ku80 activity during passage (xrs/vec) was used as a transfection control. Confirmation that this transfectant had lost Ku80 sequences was shown by PCR using the primers described previously (14). Cell lines were maintained in a monolayer culture at 37°C in DMEM supplemented with 10% FCS, glutamine, and penicillin/streptomycin, and gassed with 5% CO2 3% O2 and 92% N2. xrs/Ku80 and xrs/vec were maintained in selective conditions using 300 μg/ml hygromycin.

Cellular Sensitivity to Ionizing Radiation. Cellular sensitivity to ionizing radiation was assessed in CHO-K1, xrs-6, xrs/Ku80, and xrs/vec by measuring clonogenic cell survival following acute exposure at high dose rate. Briefly, exponential phase cells were plated at a range of cell densities, and 4 h later were irradiated at 37°C using a 33TBq 90Co source at a dose-rate of 1–2 Gy/min over an acute dose range of 1–8 Gy. Cultures were returned to incubate at 37°C for a period of 6–9 days. Cultures were fixed and stained with Giemsa; then colonies of greater than 50 cells were scored. The plating efficiencies (PE) were calculated as the colony number/cells plated and the surviving fraction (SF) is given by PE(mutant)/PE(control). Parameters of cellular radiosensitivity were obtained by fitting the surviving fraction data as a function of dose using nonlinear regression to the linear-quadratic model of radiation action (lnSF = -αd - βd²), where α and β are constants and d = dose.

Rejoining of DNA dsb Using SCGE. Initial DNA damage induction and the kinetics of repair were evaluated in all four cell lines by a neutral SCGE or “comet” assay. The “comet” assay, modified from Olive et al. (15). Briefly, cells were irradiated on ice over the dose range 10–100 Gy, then cells were harvested immediately (no repair) or incubated at 37°C for periods ranging from 15–360 min. Monolayers were harvested by trypsinization (0.05% trypsin-0.02% EDTA), and 5000 cells were embedded in 1% low gelling temperature agarose (Sigma Type VII) at a final concentration of 0.7% agarose and pipetted onto fully frosted, glass microscope slides (Dakins). Following the gelling of agarose on ice, cell lysis was undertaken using 0.5% SDS-30 mM EDTA and 0.25 mg/ml proteinase K (pH 8.0)(Boehringer) at 4°C for 1 h, followed by incubation in a
waterbath at 37°C overnight. Slides were rinsed in 0.5X Tris-borate-EDTA before electrophoresis at 1 V/cm for 25 min in 0.5 TBE at 10°C. Slides were stained with ethidium bromide (20 ng/ml) and visualized by epifluorescence using a Zeiss Axioskop microscope. Images were digitalized, and DNA damage was expressed as a comet moment (16), defined as:

\[
\text{Comet moment} = \sum \left(\frac{\text{[Amount of DNA at distance } x]}{\text{Total DNA}} \times \text{[Distance migrated]} \right)
\]

where \(x \) = distance from center of mass of head and \(n \) = no. of estimations at regular intervals from the proximal end of the head to the distal end of the tail. Approximately 50 comets/data point were acquired, and the results presented are the pooled data from a minimum of three independent experiments on each cell line.

Rejoining of DNA dsb Using Pulsed-field Gel Electrophoresis. For pulsed-field gel electrophoresis, cells were labeled with 3H-thymidine (specific activity, 1.90 GBq/mmol; 51.4 mCi/mmol) at 1 mCi/ml for 48 h and chased with nonradioactive medium for 18 h. After irradiation, cells were harvested at various time points from 0 to 4 h following a single dose of 20 Gy or at 4 h following a series of dose points from 0 to 70 Gy. Further repair was prevented by the addition of ice-cold phosphate buffered saline (PBS-A) and by keeping the flasks on ice.

After suspension in PBS-A, the cells were centrifuged at 4°C at 1000 rpm for 8 min. The cell pellets were then resuspended in 0.8% low-melting-point agarose-K (Boehringer-Mannheim) in 2% lauryl-sarcosine (Sigma)/0.5 μM EDTA at pH 7.6. Plugs in lysis solution were held on ice for 1 h and then incubated at 37°C for 24 h (17). Plugs were then stored at 4°C and were assessed by pulsed-field gel electrophoresis within 1 week of irradiation.

For electrophoresis, cell plugs were sectioned into samples of approximately 25 μl and loaded into wells of a 0.8% agarose gel and run in a Bio-Rad CHEF-DRII PFGE system. Electrophoresis conditions were: 0.5X TBE buffer, switching time 60 min, 45 V for 96 h. Buffer temperature was maintained at 14°C by circulating through a cooling bath. Yeast chromosome molecular weight markers from Schizosaccharomyces pombe and Saccharomyces cerevisiae were run to standardize DNA migration measures. Following electrophoresis, the gels were stained in 0.5 μg/ml ethidium bromide for at least 1 h and then destained in distilled water for 2–4 h. Gels were photographed under UV illumination (Chromato-vue Transilluminator, TM-15;UVP, Inc., Cambridge, MA), using Polaroid “55” film.

Following photography under UV light, each lane of the gel was cut into 5-mm sections. Gel pieces were heated slowly until melted in 1 ml of 1 M HCl and neutralized with 1 ml of 1 M NaOH; the liquefied samples were then mixed with scintillation fluid (UniScint). Isotope activity (disintegrations/min, dpm) was determined on a 2000 CA Tricarb liquid scintillation analyzer (Packard).

The number of dsb induced in DNA of irradiated cells is related to the fraction of DNA that is able to migrate out of the well under PFGE. The fraction extracted (FE) is the ratio of isotope counts detected in the sample lane to the total counts.

\[
\text{FE} = \frac{\text{dpm lane}}{\text{dpm lane} + \text{dpm well}}
\]

For dsb rejoining experiments, the results were expressed at each time point as the percentage of the damage initially induced.

Results

Complementation of Cellular Radiosensitivity. Fig. 1 shows the comparative radiosensitivity of the four cell lines. The xrs-6 mutant was hypersensitive to ionizing radiation by comparison with the parental line CHO-K1 as shown by surviving fractions at 2 Gy of 0.01 and 0.63, respectively. Transfection of the xrs cells with the human Ku80 gene greatly increased its radioresistance but not completely to the level of the parental cell line. xrs-6/vec, in which the transfected Ku cDNA sequences had been lost, exhibited identical sensitivity to the xrs-6 mutant.

Induction and Repair Kinetics of DNA Damage. Fig. 2 shows that initial levels of DNA damage were indistinguishable in all three cell lines examined by SCGE. Fig. 3a shows dsb rejoining data measured using the SCGE assay. For CHO-K1, disappearance of DNA damage was rapid over the first 60 min. The levels of dsb were indistinguishable from background in CHO-K1 beyond 240 min. By contrast, xrs-6 showed final levels of residual dsb in the region of 60% of initial damage. xrs-6/Ku showed similar kinetics of rejoicing to CHO-K1, although the amount of residual damage after 180 min was significantly greater for the xrs/Ku cell line.

The time course for rejoicing of dsb in CHO-K1 and xrs-6 cells was very similar using PFGE to that which we and others have reported previously for CHO-K1 and xrs-5 cells (Fig. 3b; Ref. 18). The rejoicing of dsb was rapid over the first hour and then entered a slow phase of repair. The repair kinetics are not defined well enough in this study to determine whether the rates of repair, in contrast to the final un rejoined levels, differ between the two cell lines. Rejoining appears to have been essentially complete after 3–4 h, and the final level of dsb is much higher in xrs-6 than in CHO-K1. This is confirmed by the results of a dose-response study in each of the three cell lines measuring unrejoined breaks present 4 h after irradiation (Fig. 4). Consistent with the SCGE data, Figs. 3 and 4 demonstrate that the rejoicing defect in xrs-6 is largely complemented by the human Ku80 gene.
gene, although again it is seen that the level of residual damage is probably higher in xrs/Ku80 than in CHO-K1.

Discussion

In this study, we have demonstrated that the human Ku80 gene can largely complement the DNA dsb rejoining defect in the xrs-6 radiosensitive mutant of CHO-K1 cells using two independent measures of DNA strand breakage. This complementation is reflected in the increase in clonogenic cell survival in the complemented cells. Thus, we have added support to the data of Tacciolli et al. (13) which characterized the Ku80 gene as being the XRCC5 gene on the basis of the reversal of the survival and V(D)J rejoining defects in xrs cells.

The Ku80 protein is a subunit of the Ku protein, a DNA end-binding protein that recognizes DNA ends in a manner which is relatively independent of the structure of the end (9). Its mechanism of action in dsb rejoining is not yet known, but two possibilities have been proposed (14). The physical attachment of the Ku protein to the DNA end may protect that end from degradation by exonucleases in the cell or may act as a "helper molecule" for the repair enzymes by guiding them to the damage or holding the ends of a dsb together. In addition, the Ku protein forms a complex with another very large protein (M, 350,000) to form a DNA-dependent kinase (DNA-PK). In vitro DNA-PK can phosphorylate and, therefore, potentially control the regulation of several proteins including p53 (19). However, it is not known to date whether p53 is phosphorylated in vivo by DNA-PK. Thus, although there is little evidence for inducible dsb repair systems in mammalian cells, the activation of critical genes may be required for repair to take place. Resolution of this mechanism awaits the further characterization of the Ku activity.

Fig. 3. a, repair kinetics of DNA damage measured by SCGE assay. b, repair kinetics of DNA damage measured by PFGE assay. CHO-K1 (O), xrs-6 (A), xrs/Ku (C), and xrs/vec (M).

Acknowledgments

We are grateful to Data Cell, Ltd. for the collaboration in the development of OPTIMAS-Comet image analysis software.

References

1237
HUMAN Ku80 GENE CORRECTS xrs-6 DNA REPAIR DEFECT

DNA Strand Break Rejoining Defect in xrs-6 Is Complemented by Transfection with the Human *Ku80* Gene

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/55/6/1235

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.