
Claus A. Kristensen, Paul E. G. Kristjansen, Nils Brünger, Robert Clarke, Mogens Spang-Thomsen, and Bjørn Quistorff

The Finsen Center, National University Hospital [C. A. K., N. B. J.], Institute of Pathological Anatomy [C. A. K., P. E. G. K., M. S-T.], and NMR-Center [B. Q.], University of Copenhagen, Copenhagen, Denmark and Vincent Lombardi Cancer Research Center, Georgetown University Medical School, Washington, DC 20007 [R. C.]

ABSTRACT

The effect of estrogen withdrawal on energy metabolism was studied in four human breast cancer xenografts: the estrogen-dependent MCF-7 and ZR75-1 and the estrogen-independent ZR75/LCC-3 and MDA-MB-231. The tumors were grown in ovariectomized nude mice with a s.c. implanted estrogen pellet. After Gompertzian growth was verified, the estrogen pellet was removed from half of the animals. In vivo 31P magnetic resonance spectroscopy of the tumors was performed 1 day before and on days 2, 6, and 14 after estrogen removal. Estrogen withdrawal induced a significant increase in the nucleoside triphosphate:P¡ ratio in the two estrogen-dependent xenografts, whereas this ratio remained unchanged in the estrogen-independent tumors. In ZR75/LCC-3 tumors a slight decrease in the nucleoside triphosphate:P¡ ratio was observed following onset of estrogen stimulation after initial growth without estrogen. Extracts of freeze-clamped tumors prepared 14 days after estrogen removal were analyzed for ATP and phosphocreatine content. Our findings suggest a correlation between estrogen withdrawal and steady-state concentrations of ATP, phosphocreatine, and P¡ in human breast cancer xenografts. Discrimination analysis of the pretherapeutic spectra enabled us to identify the tumor line and the estrogen dependence of the tumors in 80-90% of all cases.

INTRODUCTION

The antiproliferative effect of estrogen withdrawal or antiestrogen therapy has been used clinically for decades, but only little is known about the influence of this treatment on cellular energy metabolism. Noninvasive 31P-MRS2 studies of tumor tissue in vitro and in vivo provide information about energy and phospholipid metabolism in malignant cells and tissues. The data are usually expressed as ratios of metabolites (e.g., NTP:P¡, PME:P¡, and PCr:NTP). Pretherapeutic ratios as well as the course of changes after initiation of anticancer therapy have been suggested as possible parameters for early response prediction and monitoring (1, 2).

The aims of the present study were to evaluate the influence of estrogen withdrawal on energy-rich phosphates in human breast tumors xenografts, and to examine the potential of the 31P MRS profile in prediction of estrogen sensitivity. Four different human breast tumor lines were included: two estrogen receptor positive/estrogen dependent (MCF-7 and ZR75-1) and two estrogen receptor negative/estrogen independent (ZR75/LCC-3 and MDA-MB-231). ZR75/LCC-3 is a xenograft line derived from a cell line that was selected by long-term culture in estrogen-depleted conditions and ZR75/LCC-3 and MDA-MB-231 are estrogen-independent xenografts. In vivo 31P MRS was used to monitor the energy metabolism of the tumors following estrogen withdrawal.

In Vivo 31P MRS. The mice were briefly anesthetized for 4-6 min with propanidide i.p. (Sombrevin, 50 mg/kg; Gideon Richter, Budapest, Hungary) and placed in a flexible PVC tube with the tumor protruding through a hole concentric with the radiofrequency coil. To provide exact fixation, the tail of the animal was taped to the tube. In this setup, the breathing movements were concentric with the radiofrequency coil. To provide exact fixation, the tail of the animal was taped to the tube. In this setup, the breathing movements were

Received 9/26/94; accepted 2/16/95.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by grants from The Haensch Foundation, The Skovgaard Foundation, and The Danish Cancer Research Foundation.

2 To whom requests for reprints should be addressed, at Department of Oncology ONK Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.

3 The abbreviations used are: MRS, magnetic resonance spectroscopy; E2, 17b-estradiol; IMEM, improved minimal essential medium; NTP, nucleoside triphosphate; PCr, phosphocreatine; PDE, phosphodiesterase; PME, phosphomonoesters; NMR, nuclear magnetic resonance; CCS, charcoal-stripped calf serum.
over the tumor in a special probe. A Vivosep spectrometer (Otsuka Electronics, Inc.) with a wide-bore 4.7 T magnet (Magnex, Inc.) was used. Sixty-four scans were acquired with a 10-s repetition time; these parameters ensured an acceptable signal-to-noise ratio and no signal saturation. The applied pulse width was 16 μs, corresponding to a flip angle of approximately 70°. The ratios were calculated from the area under the curve of each peak. This parameter was not included in the forward selection due to a close correlation calculated from the area under the curve of each peak. The PCr/NTP ratios of the spectra did not differ from the corresponding enzymatically determined values for the tumor extract data.

Table 2. Prediction strength for each of the five ratios regarding estrogen independence

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Predictability of estrogen dependence</th>
<th>Cumulated predictability of estrogen independence</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PME:P$_i$</td>
<td>41/48 (85%)</td>
<td>41/48 (85%)</td>
<td>0.35</td>
</tr>
<tr>
<td>PME:NTP</td>
<td>34/48 (71%)</td>
<td>41/48 (85%)</td>
<td>0.09</td>
</tr>
<tr>
<td>PDE:P$_i$</td>
<td>39/48 (81%)</td>
<td>43/48 (99%)</td>
<td>0.13</td>
</tr>
<tr>
<td>PCr:NTP</td>
<td>22/48 (46%)</td>
<td>45/48 (94%)</td>
<td>0.10</td>
</tr>
<tr>
<td>NTP:P$_i$</td>
<td>36/48 (75%)</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

* r^2 = squared partial correlation coefficient: relative importance of the individual variable in the discrimination function.

This parameter was not included in the forward selection due to a close correlation between NTP:P$_i$ and PME:P$_i$ (correlation coefficient, 0.8).

RESULTS

Estrogen Withdrawal. Estrogen withdrawal resulted in a marked increase in NTP:P$_i$ ratio in the estrogen-dependent tumors ($P < 0.01$), whereas no significant differences occurred in the estrogen-independent tumors (Figs. 1–5). Typical spectra of ZR75-1 on days -1, 2, 6, and 14 are shown in Fig. 5, where the sharp increase in NTP:P$_i$ from day 2 and forward is clearly visible. When ZR75/LCC-3 was grown initially without estrogen stimulation, the growth curve did not change after estrogen supplementation, and the trend toward a decrease in the NTP:P$_i$ ratio of the estrogen-stimulated tumors was found to be statistically insignificant (0.05 ≤ $P < 0.1$; Fig. 6).

The PCr:NTP ratio was only assessed in the ZR75-1 and ZR75/LCC-3 tumors, since most of the MDA-MB-231 and MCF-7 tumor spectra contained PCr levels below the MRS detection limit. In ZR75-1, estrogen withdrawal resulted in a constant PCr:NTP ratio of approximately 100% of the initial value during the whole 14-day time point, while the continuously estrogen-stimulated tumors had a markedly decreased PCr:NTP ratio on day 14 ($P < 0.025$; Fig. 2). No difference in the PCr:NTP ratio between estrogen-stimulated and estrogen-deprived ZR75/LCC-3 tumors was found; however, these tumors were not MRS analyzed on day 14 (Fig. 3).

In the tissue extracts (Table 3), no difference in tumor ATP content between the estrogen-stimulated and the estrogen-deprived ZR75-1 tumors was found. A clear increase in PCr content was observed when ZR75-1 as well as MCF-7 was estrogen deprived. This difference corresponds to the decrease in PCr:ATP during continuous estrogen stimulation demonstrated by 31P MRS of ZR75-1 (Fig. 3) and is probably reflecting a decrease in PCr content following increasing ischemia during tumor growth. The estrogen-supplemented ZR75/...
LCC-3 tumors were characterized by a significantly lower ATP concentration than the estrogen-deprived tumors ($P < 0.01$). This difference was also found in MCF-7, but the amount of ATP/g tumor tissue in both MCF-7 groups was between 2 and 4 μg/g, whereas in the ZR75/LCC-3 tumors the ATP concentration was approximately 10 times lower in the estrogen-deprived tumors compared to the continuously stimulated tumors. Very low levels of PCr were found and there was no difference in ATP and PCr concentrations in the MDA-MB-231 tumors when comparing ± estrogen stimulation.

Classification of Tumor Lines. Pretherapeutic ratios and doubling time for the four examined tumors are presented in Fig. 7. Pretherapeutic ratios from all four tumor types were analyzed by the linear discriminant function. Table 1 shows the accuracy by which we were able to correctly classify the individual tumors and to predict the estrogen dependence and estrogen independence of the tumors. Also, the correctly classified tumors and the distribution of the misclassified tumors are given. Interestingly, there was no general pattern in the relatively infrequent misclassification of tumors: one estrogen-dependent line was not classified as the other estrogen-dependent line more frequently than as one of the estrogen-independent lines or vice versa.

Since none of the 22 ZR75/LCC-3 tumors were classified as ZR75-1, there was no tendency to misclassify the estrogen-independent subline as the estrogen-dependent wild type. In Table 2 the relative importance of the five ratios with regard to their predictability of estrogen independence is given. PME:P1 was the most important single contributor to the predictability of estrogen dependence on the basis of 31P MRS. NTP:P1 was the second most important single parameter but, due to a very close correlation (correlation coefficient, 0.8) between these two ratios, the SAS program demands that one of the two ratios are excluded in the performance of a discrimination involving several ratios. Since PME:P1 is in itself the most important ratio, we chose to exclude NTP:P1.
Fig. 5. 3P MRS of a representative ZR75-1 tumor on days -1, 2, 6, and 14 after estrogen withdrawal.

Table 3 Mean concentration of PCr and ATP in tumor tissue after 14 days of growth with or without 17ß-estradiol

<table>
<thead>
<tr>
<th>Tumor Line</th>
<th>PCr (μmol/g)</th>
<th>ATP (μmol/g)</th>
<th>PCr/ATP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA-MB-231</td>
<td>+E₂ 0.100 (3)</td>
<td>0.927 (4)</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>-E₂ 0.210 (4)</td>
<td>1.397 (5)</td>
<td>0.120</td>
</tr>
<tr>
<td>ZR75/LCC-3</td>
<td>+E₂ 0.607 (11)</td>
<td>0.193 (11)"</td>
<td>1.429"</td>
</tr>
<tr>
<td></td>
<td>-E₂ 0.796 (11)</td>
<td>2.240 (11)</td>
<td>0.365</td>
</tr>
<tr>
<td>ZR75-1</td>
<td>+E₂ 0.489 (4)"</td>
<td>2.480 (4)</td>
<td>0.239"</td>
</tr>
<tr>
<td></td>
<td>-E₂ 1.179 (3)</td>
<td>1.626 (3)</td>
<td>0.687</td>
</tr>
<tr>
<td>MCF-7</td>
<td>+E₂ 0.688 (4)"</td>
<td>2.246 (4)"</td>
<td>0.304</td>
</tr>
<tr>
<td></td>
<td>-E₂ 1.761 (4)</td>
<td>3.724 (4)</td>
<td>0.473</td>
</tr>
</tbody>
</table>

*(n) P < 0.05.

the two estrogen-independent tumors) was significant ($P < 0.05$) when a t test was used, Fig. 7 shows considerable overlap between the SDs of PME/Pi, and it seems likely that the high predictive value of PME/Pi is mainly caused by the low PME/Pi ratio of the MDA-MB-231 tumors.

DISCUSSION

The present study is the first 3P MRS report on the energy metabolic effect of estrogen withdrawal in human breast cancer xenografts on nude mice. The observed increase in the NTP/Pi ratio after estrogen withdrawal was closely related to estrogen dependence, since the lack of NTP/Pi increase was not only found in the de novo estrogen receptor-negative and estrogen-independent wild-type MDA-MB-231, but also in ZR75/LCC-3, selected from ZR75-1 for estrogen independence. The lack of NTP/Pi increase after estrogen withdrawal from ZR75/LCC-3 further corroborates that this phenomenon is in fact related to estrogen dependence. The underlying mech-
The effect of ovariectomy on energy metabolism detected by 31P MRS in induced mammary tumors in rats has been studied by Rodrigues et al. (10), who found a significant increase in the PCr:NTP ratio in estrogen-sensitive tumors already 2 days after ovariectomy, whereas no change of this ratio was seen in response to ovariectomy in estrogen-insensitive tumors. As demonstrated in Figs. 1–6, we found a close correlation between estrogen dependence and energy metabolic (NTP:Pj) response to estrogen withdrawal. These findings are in concordance with those recently reported by Furman et al. (3, 4) in tamoxifen-treated MCF-7 tumors; a significant increase in the NTP:Pj ratio in response to the initiation of tamoxifen therapy was detected already after 4–7 days. In these studies performed in nude mice with intact ovaries, however, the estrogen pellet was removed when tamoxifen therapy was initiated. Consequently the observed increase in the NTP:Pj ratio may reflect estrogen deprivation as seen in the present study rather than initiation of tamoxifen therapy.

Whether the demonstrated changes in energy metabolic ratios after antihormonal therapy demonstrated by us and others (3, 4, 10) is caused by intracellular changes in metabolic rates or increased nutrient supply following stromal alterations has not been fully elucidated. Although a markedly decreased glycolytic rate following tamoxifen treatment has been demonstrated by 13C MRS of the estrogen-dependent cell lines MCF-7 (3) and T47D (11) in vitro, central vascular collapse, as seen on magnetic resonance images after 24 h, was proposed as the origin of the abrupt spectral shift in vivo changes after estrogen withdrawal and initiation of tamoxifen therapy (4). The reported central necrosis and subsequent fibrosis in MCF-7 tumors is contrasting the data of Stubbs et al. (12), who found no histologically detectable changes in the tissue structure of induced mammary tumors after 2 days of estrogen deprivation. Furthermore, previous studies have indicated that tumor cell death in response to endocrine ablation cannot be attributed to vascular deficiency (13), and it has been demonstrated that an increased number of apoptotic cells are present in MCF-7 cells already 1 day after estrogen withdrawal (14). A difference in size between estrogen-stimulated and estrogen-depleted tumors would not explain the NTP:Pj increase, since in our study this observation was present already 2 days after estrogen withdrawal. Also, the acute NTP:Pj increase occurred in the growth-inhibited tumors, indicating that changes in tumor volume or localization was not the reason for the observed difference between growth-inhibited and control tumors.

We found no difference in the spectrophotometrically determined ATP concentration between estrogen-depleted and estrogen-supplemented ZR-75-1 tumors (Table 3). Consequently, a decrease in the Pi concentration was probably the explanation of the observed increase in the NTP:Pj ratio after estrogen withdrawal. This decrease in Pi could be caused by either increased washout due to improved tumor blood flow in the estrogen-depleted tumors or by a so-called compartmentation phenomenon: the intramitochondrial Pi pool is probably invisible by MRS. An increased mitochondrial uptake of Pi would decrease the cytoplasmatic (i.e., visible) Pi concentration, and would consequently have increased the NTP:Pj ratio. This phenomenon has also been demonstrated in liver tissue, where a switch from a mainly glycolytic to a mainly gluconeogenetic state was followed by a decrease in NMR-detectable Pi and a corresponding increase in intramitochondrial Pi concentration (15). A similar compartmentation is not evident. However, the fact that also the estrogen-independent ZR75/LCC-3 subline demonstrated a tendency toward decreased PCr concentration (Table 3) during estrogen stimulation, in spite of similar tumor sizes with and without estrogen stimulation, indicates a direct estrogen-mediated effect on the turnover of high-energy phosphates, possibly by regulation of creatine kinase activity.

Surprisingly, the ATP concentration of estrogen-depleted ZR75/LCC-3 tumors was 10-fold higher than in the continuously estrogen-stimulated tumors on day 14 after estrogen withdrawal. This finding may reflect a defect in the regulatory mechanisms of phosphate transfer between Pi, ATP, and PCr in estrogen-independent tumors. Still, no difference in ATP concentration was found between estrogen-supplemented and estrogen-depleted MDA-MB-231 tumors (Table 3). Although it may be that estrogen inhibits creatine kinase activity in estrogen-dependent tumors, it should be kept in mind that a down-regulation of enzyme activity does not change the steady-state concentration of either the substrate or the product, but only the conversion rate, provided that the system is in equilibrium. Recent studies have demonstrated a marked growth inhibitory effect on rat mammary tumors of dietary creatine and cyclocreatine, and PCr has been shown to inhibit several glycolytic enzymes (17), indicating a crucial role of creatine kinase and high-energy phosphates in the regulation of tumor growth.

PME:Pi turned out to be the pretherapeutic parameter most closely related to estrogen dependence (Table 2), and from the 31P MRS appearance it has been possible with great certainty to discriminate between estrogen dependence/independence and to identify the individual tumors. PME are precursors in the biosynthesis of phospholipids (18). Other authors have proposed PME-related ratios as indicators of cancer and sensitivity to antiestrogens (19, 20) or chemotherapy (21) due to the presumed association of PME levels to increased synthesis of membrane phospholipids and cell turnover rate (22). A receptor-mediated regulatory effect of estrogen on the phospholipid metabolism might explain the observed differences in this study (Fig. 7). Our data also indicate that it is possible to reach an even higher predictability regarding estrogen dependency by including PCr:NTA, PDE:Pi, and PME:NTA (Table 2) in the analysis. The NTP:Pi ratio was correlated to PME:Pi, and also to the tumor growth rate. Slow-growing tumors expressed a high NTP:Pi ratio and vice versa (Fig. 7). There was a general tendency in all tumors toward decreased NTP:Pi and PCr:NTP during tumor growth (Figs. 1–6). This relationship between energy metabolism and tumor growth is consistent with other observations of a decrease in NTP:Pi with increasing tumor size (2).

ACKNOWLEDGMENTS

We thank lb Terkildsen and lb J. Christensen for excellent assistance with the MRS recordings and statistical analyses, respectively.

REFERENCES

5. Clarke, R., Brinner, N., Thompson, E. W., Glanz, P., Katz, D., Dickson, R. B., and Lipman, M. E. The inter-relationships between ovarian-independence, growth, tumor-

Claus A. Kristensen, Paul E. G. Kristjansen, Nils Brünner, et al.

Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/55/8/1664

Sign up to receive free email-alerts related to this article or journal.

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.