Eradication of Interleukin 5-transfected J558L Plasmacytomas in Mice by Hydrogen Peroxide-generating Stealth Liposomes

Michael K. Samoszuk, William C. Wimley, and Vince Nguyen

Departments of Pathology (M. K. S., V. N.) and Physiology and Biophysics (W. C. W.), University of California, Irvine, California 92717-4800

ABSTRACT

Certain human tumors are extensively infiltrated by eosinophils and contain extracellular deposits of eosinophil peroxidase, which uses hydrogen peroxide as a substrate to produce highly toxic hypohalous acids. We hypothesized that J558L-HI, an interleukin 5-transfected murine plasmacytoma that is infiltrated by numerous degranulating eosinophils, would be especially sensitive to killing by hydrogen peroxide generated by glucose oxidase (β-glucose:oxygen oxidoreductase; EC 1.13.4). Here we report that 4 i.v. injections of 0.5 ml of hydrogen peroxide-generating, anionic Stealth liposomes containing 50 µg of glucose oxidase eradicated s.c. implants of 10⁶ J558L-HI plasmacytoma cells in 6 of 13 mice. By contrast, the J558L-HI tumor grew rapidly in 13 of 13 untreated mice and in 10 of 10 mice treated with daily i.v. injections of 50 µg of unencapsulated (free) glucose oxidase (P = 0.002 by log-rank test of survival curves constructed using the Kaplan-Meier method). Antisense transfected J558L tumors that did not contain eosinophils were not eradicated by the peroxide-generating liposomes in any of the 10 mice that were treated. Treatment with the liposomes was well tolerated for the first three doses (given on days 3, 4, and 5 after tumor inoculation). The fourth dose given on day 10 produced significant allergic toxicity and was, therefore, omitted in a second trial with only minimal reduction in the therapeutic response. We conclude that peroxide-generating, anionic Stealth liposomes can eradicate plasmacytomas infiltrated by eosinophils in mice. Our results, therefore, suggest that peroxide-generating compounds may be a useful experimental approach for treating those human tumors that are naturally infiltrated by eosinophils but resistant to conventional therapies.

INTRODUCTION

Certain human tumors such as lymphomas and a subset of carcinomas are sometimes extensively infiltrated by degranulating eosinophils (1–8). By administering a radiolabeled monoclonal antibody directed against EPO3 to patients whose lymphomas were infiltrated by eosinophils, we have shown that these tumors also contained extensive extracellular deposits of EPO (9, 10).

EPO is a heme-enzyme that catalyzes the production of cytotoxic hypohalous acids from hydrogen peroxide and halides or pseudohalides such as thiocyanate (11–13). These cytotoxic compounds readily kill tumor cells and vascular endothelium (14–17), prompting us to hypothesize that naturally occurring EPO deposition within certain tumors could sensitize the tumors to killing by exogenous hydrogen peroxide. In a previous report (18), however, we unexpectedly showed that EPO within free granules obtained from eosinophil sonicates actually protected tumor cells from killing by hydrogen peroxide in vitro. Because our in vitro experiments using free granules might not have adequately duplicated the in vivo adherence of EPO to tumor cells or endothelial cells, it remained uncertain if naturally occurring EPO deposits would sensitize tumors to hydrogen peroxide or protect them. An animal model of eosinophil degranulation within a tumor was clearly needed to resolve this issue.

In the current study, the animal tumor model that we selected for testing the effects of in vivo eosinophil degranulation uses the IL-5-secreting, transfected J558L cell line that was developed by Krüger-Krasagakes et al. (19). J558L is a heavy-chain-lose variant of the murine plasmacytoma cell line J558. It is of BALB/c origin. A mouse IL-5 cDNA fragment was cloned into the BglII site of the plasmid pLTR in sense (pLTR-IL-5S) and antisense (pLTR-IL-5AS) orientations. Transfectants were then produced and assayed for IL-5 activity, and two stable cell lines were eventually subcloned: J558LAS, which produces no IL-5; and 5D17 (J558L-HI), which produces approximately 500 units of IL-5 per 10⁶ cells/48 h. When inoculated into mice, the HI IL-5-secreting transfectant develops high numbers of eosinophils within the tumors and continues to grow in vivo at the same rapid rate as AS, the non-secreting, antisense transfectant (19).

Most importantly, the J558L-HI tumor mimics the human lymphomas with eosinophilia that have been shown by us to express mRNA coding for IL-5 (5, 6, 20).

Based on our preclinical toxicology and biodistribution studies (21, 22), we then selected GO to test our hypothesis that J558L-HI tumors would be sensitive to killing by exogenous hydrogen peroxide. This enzyme generates abundant hydrogen peroxide in vivo under physiological conditions. Acidic liposomes were specifically selected to deliver the glucose oxidase to tumors with eosinophilia because highly cationic, eosinophil major basic protein causes disintegration of acidic liposomes (23).

Stealth liposomes were chosen for this study because they have been shown to accumulate in perivascular clusters within tumors and to have only minimal intratumoral accumulation in blood vessels within normal tissues (24). In addition, they remain in the blood up to 100 times longer than conventional liposomes and show dose-independent kinetics of blood clearance (25). Consequently, fewer Stealth liposomes will be cleared by the liver, and more will accumulate in implanted tumors (25). These properties are especially important when using GO because the free enzyme is normally cleared very rapidly from the body by the liver and spleen (21, 22). This report, therefore, describes the results of our experiments using free GO and GO in anionic Stealth liposomes to treat plasmacytomas in mice.

MATERIALS AND METHODS

Tumor Cell Lines. The J558L-HI and antisense (AS) cell lines were generously provided by Dr. Tibor Diamanstein of the Free University of Berlin (Berlin, Germany). They were maintained at 37°C in a humidified cell culture incubator with 5% carbon dioxide in RPMI 1640 supplemented with 10% FCS (Sigma Chemical Co., St. Louis, MO). The human H9 T-cell line (American Type Culture Collection, Rockville, MD) was used in the clonogenic cell-killing assays because human T-cell lymphomas are infiltrated frequently by eosinophils.

For the in vivo studies, 10⁶ washed plasmacytoma cells were inoculated s.c. into the shaved and depilated flanks of BALB/c mice (Simonsen Labs, Gilroy, CA). At this dosage, virtually all mice develop tumors greater than 10 mm in diameter within 14–16 days. To confirm the presence of eosinophilia in the HI transfectants, representative tumors at 14 days after inoculation were removed.
and routine cryostat sections were prepared. The cryostat sections were then incubated in a chromogenic substrate of EPO (18), counterstained with hematoxylin, cover-slipped, and examined with routine light microscopy for the presence or red-staining eosinophils and EPO deposits.

Clonogenic Assay for EPO-coated Cells. To quantify the sensitivity of EPO-coated, human lymphoma cells to GO, we performed a variation of our previously described clonogenic cell killing assay (18). Instead of using EPO in free granules obtained from sonicated eosinophils, however, we precoated the H9 target cells with an acetate-buffered extract containing EPO and eosinophil major basic protein (17). Successful coating of the tumor cells with EPO was confirmed by incubating cytopreparations of aliquots of the coated cells in the chromogenic substrate for EPO (18).

The EPO-coated, H9 cells were then incubated with 0.025 or 0.005 μg/ml of GO (Boehringer-Mannheim, Indianapolis, IN) in RPMI 1640 supplemented with 10% FCS for 0.5, 1.0, and 2.0 h. Following the incubation, serial dilutions of the cells were prepared for the clonogenic assay as described previously (18). The baseline control consisted of H9 cells incubated in acetate buffer only, without EPO coating, followed by exposure to GO. The negative control consisted of EPO-coated and uncoated cells exposed for 2 h to cell culture medium alone, without any GO. A final control consisted of EPO-coated cells incubated with GO in medium that also contained 10 μg/ml catalase (Sigma) to neutralize hydrogen peroxide. All clonogenic assays were performed in duplicate, and the results were then averaged.

Production of GO in Stealth Liposomes. Stealth acidic liposomes (0.2-μm diameter) were synthesized using the protocol of Wu et al. (26) and a 30:30:33:5 composition of phosphatidyl choline:phosphatidic acid:cholesterol:1,2-distearoyl-3-phosphoethanolamine-N-polyethylene glycol-2000 (Avanti Polar Lipids, Inc., and Liposome Technology, Menlo Park, CA). The lipids were first dissolved in chloroform and then combined in the appropriate ratios. Vacuum drying was used to evaporate the organic solvent, and the lipids were then rehydrated in HBSS containing GO (30 mg/ml).

After overnight hydration, the lipids and GO were freeze-thawed in liquid nitrogen 10 times and then passed 31 times through a double 200-mm polycarbonate filter (Millipore) in a Lipofast (Lipex Biomembranes, Vancouver, British Columbia, Canada) extruder. The acidic liposomes were then resuspended in HBSS at a concentration of 10 mg/ml lipid. Prior to use, the liposomes were separated from free GO by gel chromatography on a Sephadex minicolumn. Spectrophotometric assays demonstrated that approximately 5% of the original GO was incorporated into the liposomes, and the enzyme did not appear to have lost any of its activity from the processing.

Accumulation of GO in Plasmacytomas. The concentration of GO in s.c. plasmacytomas was measured in groups of three mice at 5, 15, and 30 min after i.v. injections of a 50-μg dose of GO in acidic stealth liposomes or free GO. A capture ELISA was then used to measure the GO in the tumor homogenates (21).

Stability of Anionic Stealth Liposomes. This experiment was designed to compare the ability of 0.1 μl of 0.1% Triton X-100 (positive control) with 10^5 sonicated human eosinophils (a test of cationic, eosinophil granule proteins), PBS (negative control), and pH 4.2 acidic acetate buffer (acidic positive control) to liberate GO from 100 μl of acidic Stealth liposomes. After 15 min of incubation at room temperature, the test and control mixtures were fractionated on a Sephadex minicolumn (Pharmacia, Piscataway, NJ) to separate GO-liposomes from free GO in the supernatant, and aliquots of the supernatants were then assayed colorimetrically for the activity of liberated GO (21).

Survival Studies. These experiments were performed to determine if free GO or GO-Stealth liposomes could retard the growth of J558L HI and antisense tumors grown in BALB/c mice. In brief, 36 female BALB/c mice were inoculated s.c. into the right flank with 1 × 10^6 washed J558L HI tumor cells obtained directly from cell culture. On days 3, 4, 5, and 10 after inoculation, 13 of the mice received i.v. injections of 50 μg of GO in Stealth liposomes. Another 13 mice were the negative control and received sham injections of liposome vehicle only. The remaining 10 mice received i.v. injections of 50 μg of free (unencapsulated) GO. For comparative purposes, another group of 10 mice received s.c. inoculations of 10^6 washed, antisense-transfected tumor cells and was then treated with GO liposomes as described above.

The diameters of the tumors were measured daily for up to 35 days, and the endpoint was designated to be a tumor diameter of 15 mm. This endpoint was selected as a surrogate marker and humane alternative to death of the mice. Survival curves were constructed using the Kaplan-Meier method, and the effects of GO and GO liposomes on survival were assessed using the log-rank test. Mice that survived for 35 days were then necropsied and examined for the presence of residual tumor.

After the results of the first experiment were obtained, the treatment protocol was repeated in a second group of mice to verify the initial findings. In this repeat experiment, however, the peroxide-generating liposomes were administered only on days 3, 4, and 5 after tumor injection to eliminate the allergic toxicity.

RESULTS

Tumor Cell Lines. The J558L, HI tumors consistently contained high numbers of eosinophils, particularly at the edges of the tumors (Fig. 1). In addition, there appeared to be deposition of peroxidase activity on the vascular endothelium. By contrast, the antisense tumors had few or no eosinophils (data not shown).

Clonogenic Assays. The EPO-coated H9 cells had abundant peroxidase activity on the membranes of the cells (Fig. 2). When the EPO-coated cells were incubated with GO for varying periods of time, there were practically no surviving clonogenic units (Table 1). In the absence of EPO precoating, there were many surviving clonogenic units, except after a 2-h exposure to 0.025 μg/ml of GO. The addition of catalase to the reaction mixture neutralized the killing of EPO-coated cells by GO.

Accumulation of GO in Plasmacytomas. Injection of GO-Stealth liposomes into tumor-bearing mice yielded tumor concentrations of GO that were approximately 10-fold higher than tumor concentrations achieved by injections of free GO (Table 2). The mice tolerated the GO-liposome injections well, and there was no evidence of any acute toxicity such as acral cyanosis, lethargy, or ruffled fur.

Stability Assay. The results of the stability assay are presented in Fig. 3. The eosinophil granules liberated almost as much GO from the liposomes as the detergent Triton X-100. As expected, acidic buffer also destabilized the acidic liposomes.

Survival Studies. The effect of GO-liposome treatment on the survival of mice bearing J558L HI plasmacytomas was pronounced (P = 0.002 by log-rank test; Fig. 4). Specifically, injections of peroxide-generating liposomes into 13 mice bearing J558L HI plasmacytomas eradicated the tumors in 6 of the mice that were observed
Fig. 2. Demonstration of EPO-coated H9 cells. The EPO deposits are visualized as multiple, punctate, orange granules on the membranes of most of the cells in this cytopreparation. The conditions are the same as in Fig. 1. ×400.

Table 1. Clonogenic assays of EPO-coated H9 cells exposed to glucose oxidase

<table>
<thead>
<tr>
<th>Glucose oxidase concentration (µg/ml)</th>
<th>Exposure time (h)</th>
<th>+ EPO</th>
<th>No EPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025 µg/ml</td>
<td>0.5</td>
<td>0</td>
<td>958 ± 710</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>2 ± 1</td>
<td>895 ± 680</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0</td>
<td>9 ± 6</td>
</tr>
<tr>
<td>0.005 µg/ml</td>
<td>0.5</td>
<td>0</td>
<td>1760</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0</td>
<td>1760</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0</td>
<td>805 ± 750</td>
</tr>
<tr>
<td>None</td>
<td>2</td>
<td>1760</td>
<td>1760</td>
</tr>
</tbody>
</table>

Notes: Results are expressed as the mean number of surviving clonogenic units/well ± 1 SD. 

Table 2. Concentration of glucose oxidase in s.c. plasmacytomas

<table>
<thead>
<tr>
<th>Time after i.v. injection (min)</th>
<th>Concentration of GO (µg/g tumor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free GO</td>
<td>GO-Stealth Liposomes</td>
</tr>
<tr>
<td>5 min</td>
<td>0.22 ± 0.2 (n = 3)</td>
</tr>
<tr>
<td>15 min</td>
<td>0.78 ± 0.06 (n = 3)</td>
</tr>
<tr>
<td>30 min</td>
<td>0.046 ± 0.03 (n = 3)</td>
</tr>
</tbody>
</table>

Notes: Concentration was measured by capture ELISA in homogenates of wet tumor tissue.

Discussion

We have demonstrated that i.v. injections of peroxide-generating, anionic Stealth liposomes eradicated 46% of mice a genetically engineered plasmacytoma that was infiltrated by numerous degranulating eosinophils. The observed inhibition of tumor growth seemed to depend on the presence of eosinophilia (and presumably, EPO) within the tumor because a similar effect was not observed in mice that were inoculated with the IL-5 antisense-transfected tumor that was not infiltrated by eosinophils. Furthermore, only anionic Stealth lipo-
somes were capable of delivering inhibitory quantities of GO to the tumor. Thus, we propose that peroxide-generating drugs encapsulated in anionic Stealth liposomes may be a novel approach for experimental treatment of those human tumors that are naturally (1–8) or artificially (28, 29) infiltrated by eosinophils and resistant to conventional treatment.

The binary killing system that we have described in this report relies upon the deposition of EPO within tumors to provide the tumor specificity and upon the anionic Stealth liposomes to deliver the cytotoxic substrate, hydrogen peroxide, to the EPO in the tumor. Our in vitro clonogenic assays and in vivo survival studies have demonstrated clearly that this binary killing system is extraordinarily powerful, even in the presence of naturally occurring, potential inhibitors such as plasma thiocyanate, which can be converted by EPO and hydrogen peroxide to the weak oxidizer, hypothyocyanite (13). The most likely explanation for the effective cell killing in the presence of plasma thiocyanate is that the excess hydrogen peroxide that was produced continuously by GO then spontaneously reacted with the hypothyocyanite to form cyanosulfurous acid and cyanosulfuric acid (30). The latter two compounds are highly cytotoxic and bactericidal (30) and probably accounted for the in vitro and in vivo killing that we observed. Most importantly, this explanation also accounts for our finding that catalas completely neutralized killing of EPO-coated cells by GO in the clonogenic assays.

Another novel aspect of our study was our observation that sonicated eosinophil granules destabilized anionic Stealth liposomes and liberated GO from the liposomes. This finding was not particularly surprising in view of the highly cationic nature of most eosinophil granule proteins. It is significant, however, because it suggests that anionic Stealth liposomes may be an ideal vehicle for delivering drugs to inflamed sites that are infiltrated by degranulating eosinophils and presumably characterized by hyperpermeable blood vessels.

Our studies of GO concentrations in mouse plasmacytomas confirmed the reports by others that Stealth liposomes deliver much higher quantities of a drug to a tumor than administration of free drug alone (24, 25). The only apparent limitation to this approach turned out to be the intrinsic immunogenicity of the GO, which became apparent after the fourth dose that was administered 10 days after tumor injection. In our second experiment where only three doses of the liposomes were given, we observed no allergic reactions and only a slightly reduced therapeutic efficacy compared to four doses. Obviously, additional detailed studies will need to be performed to determine the dosages and timing needed to attain optimum therapeutic results from GO-liposomes. In future reports, therefore, we will describe such optimization studies.

REFERENCES


Eradication of Interleukin 5-transfected J558L Plasmacytomas in Mice by Hydrogen Peroxide-generating Stealth Liposomes

Michael K. Samoszuk, William C. Wimley and Vince Nguyen


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/56/1/87

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/56/1/87.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.